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Abstract. The aim of the work was to compare water consumption 

forecasting in two towns of different sizes. The objects of research were 

the town of Toruń and the town of Żnin in central Poland. Two models 

were built for each. The models were constructed using the multiple 

regression method. In constructing the models, explanatory variables 

determined by Principal Component Analysis (PCA) were used. The set of 

explanatory variables identified to construct each individual model 

differed. The models for Toruń obtained better forecast quality assessment 

criteria values. This was mainly due to the water supply system in the 

small town (Żnin) being less resilient to sudden, short-term changes in 

consumers’ water use. At the same time, the importance of the location of 

the meteorological stations from which data was taken to build the model 

was emphasised.  

1 Introduction 

The infrastructure for supplying water to urban residents is classed as critical. Therefore, 

even at the design and construction stage, it is necessary to consider all conditions that may 

negatively impact its operation. One basic requirement is to quantify water demand in a 

prospective period, taking into account the needs of all end-users. In practice, this is done 

using guidelines that provide a normative measure of water demand. Research results show 

that real water consumption in many towns deviates significantly from the assumed design 

values [1, 2]. Thus, water consumption forecasts are an important additional element for 

facilitating the rational operation of water supply systems. The literature has presented 

many methods and solutions in this domain [3–5]. At the same time, it is impossible to 

indicate the best method, due to limitations in the ability to compare forecast results (the 

use of diverse measures of forecast accuracy). Local conditions and the unique characters 

of objects of study (including size of water supply system) can be decisive in determining 

results, so are also of significant importance. The aim of the work is to compare water 

consumption forecasts in two towns of different sizes. This was done using a multiple 

regression model. A set of explanatory variables was first defined using Principal 

Component Analysis (PCA). 
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2 Research area 

The objects of study were the town of Toruń and the town of Żnin in the Kujawsko-

Pomorskie voivodeship in central Poland. Toruń has over 200,000 inhabitants and a very 

well developed water and sewage infrastructure. The length of the water supply system is 

currently 621.2 km, and the sewerage network is 654.2 km long. At present, almost all the 

town’s residents are connected to the municipal water and sewage system [6]. Żnin is much 

smaller – a town of only 14,000 residents. In recent years, a number of investments have 

been made in water and sewage infrastructure in the town. This has increased the 

availability to this infrastructure. Currently, approximately 97% of the town's population is 

connected to the water supply and 86% to the sewage system. In both towns, industrial use 

of mains water is proportionally small.  

 
Fig. 1. Location of research objects 

3 Materials and methods 

The study uses daily water consumption values for the towns being studied. The data was 

made available by the companies Torun Waterworks Company Ltd and Zakład 

Wodociągów i Kanalizacji "WIK" Sp. z o. o. The study also used daily values of selected 

meteorological parameters recorded at the Toruń-Wrzosy and Kołuda Wielka stations. 

These meteorological stations belong to the Institute of Meteorology and Water 

Management - National Research Institute (IMWM-NRI). Data was used for the period 

2011–2017. 

The research progressed in three main stages:  

1. determining explanatory variables, 

2. building the models, 

3. forecasting, and evaluating the models. 

A set of explanatory variables was determined using Principal Component Analysis 

(PCA) based on the procedure presented by M. M. Haque et al. [7]. To determine the 

explanatory variables, data from 2011–2016 were used. The analysis adopted a correlation 

matrix. A Bartlett sphericity test was conducted and the Kaiser–Mayer–Olkin coefficient 

(KMO) was determined, which confirmed the validity of using the PCA method for the 
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whole period and for warm periods (April–September). The KMO coefficient of data from 

the cold periods (Jan–March and October–December) for Żnin was below the threshold 

value of 0.500(defined by Hutcheson and Sofroniou [8]), and only slightly exceeded it for 

Toruń (0.502). For this reason cold periods were not subjected to a separate detailed 

analysis.  

After performing the calculations, it was decided that only two components would be 

taken into account in determining the explanatory variables: PC1 and PC2. Principal 

component 3 (PC3) was omitted despite having an eigenvalue above 1.000 (the criterion of 

H. F. Kaiser [9]). A. Balicki [10] emphasises the importance of the ability to interpret 

components in determining their number. In this case, including PC3 would have prevented 

the results from being properly interpreted. 

According to the procedure presented by M. M. Haque et al. [7], the set of explanatory 

variables was determined based on the following parameters: 

– selecting the variables with the highest correlation coefficients for a given component 

(variable loadings). 

– attempting to avoid the multicollinearity problem in the regression model by selecting 

mutually uncorrelated variables. 

– attempting to ensure diversity in the character of the selected variables, e.g. “previous-day 

water consumption” is not a meteorological variable, and so was included in the 

construction of the explanatory models. 

 The models were constructed using the multiple regression method. In constructing the 

models, explanatory variables determined by Principal Component Analysis (PCA) were 

used. Two models were built for each. The first model, “Year”, was built using daily data 

for 2011–2016. The second model, “Hot Periods”, was built using daily data for the warm 

months (April–September) of 2011–2016. The models were then used to predict water 

consumption in 2017. The following indices were used to assess the quality of forecasts: 
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where: At – observed values, Ft – predicted values. 

Statistical analyses were performed in PS IMAGO 5 software using the IBM SPSS 

Statistics analytical engine and in Statistica. 

4 Results 

The Principal Component Analysis results are presented in Tables 1 and 2. In the case of 

both the town and the town, the two principal components identified for both the entire 

analysed period and the hot half-year explained a total of 60% of variance. It should also be 

emphasised that while both components combined explained a similar percentage of the 
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variance in each town, the amount of the variance explained by PC1 was more than double 

that of PC2 (Table 1). 

Table 1. Eigenvalues and percentage of explained variance. 

Town Żnin Toruń 

Model Year  Hot Periods Year  Hot Periods 

PC No. PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

Eigenvalue 3.333 1.151 2.947 1.347 3.357 1.186 2.994 1.441 

Explained 

variance [%] 
47.62 16.45 42.11 19.24 47.96 16.94 42.77 20.58 

For the entire period, the highest variable loadings of the PC1 component were attained 

by variables representing thermal conditions. A high loading was also attained by the 

“previous-day water consumption” variable. For PC2, the highest loadings were for “daily 

sum of precipitation” and “average daily relative humidity” (Table 2). Considering all the 

mentioned criteria for selecting explanatory variables, the following were selected: 

– for Żnin: “average daily temperature”, “previous-day water consumption”, and “daily 

sum of precipitation”. 

– for Toruń: “maximum daily temperature”, “previous-day water consumption”, and “daily 

sum of precipitation”. 

Table 2. Correlation of the two distinguished components with the analysed variables in 2011–2016 

and in hot periods of 2011–2016. 

Variable 

Model Year  Model Hot Periods 

Żnin Toruń Żnin Toruń 

PC1 PC2 PC1 PC2 PC1 PC2 PC1 PC2 

Minimum daily 

temperature [°C] 
0.934 0.184 0.900 0.257 0.900 0.132 0.827 0.397 

Maximum daily 

temperature [°C] 
0.972 0.074 0.978 0.078 0.953 -0.034 0.952 0.042 

Average daily 

temperature [°C] 
0.976 0.120 0.976 0.137 0.984 0.030 0.969 0.136 

Average daily relative 

humidity [%] 
-0.561 0.603 -0.651 0.552 -0.182 0.833 -0.405 0.785 

Daily sum of 

precipitation [mm] 
0.161 0.695 0.109 0.684 0.196 0.464 0.086 0.635 

Average daily wind 

speed [m/s] 
-0.080 -0.359 -0.100 -0.357 -0.218 -0.483 0.084 -0.294 

Water use (previous day) 0.465 -0.351 0.438 -0.440 0.376 -0.429 0.535 -0.396 

 

For warm periods, the variables that met the adopted criteria for PC1 were “average 

daily temperature” and “previous-day water consumption”, while only “mean daily relative 

humidity” met the criteria for PC2 (Table 2). As a result, for the construction of the 

explanatory model using the multiple regression method, the same variables were adopted 

for both towns: “average daily temperature”, “previous-day water consumption” and 

“average daily relative humidity”.  

Table 3 presents the water consumption models that were constructed and the selected 

statistics characterising them. The highest R2 coefficients were obtained by model II, and 

the lowest by model IV. In all models the most important variable was variable x1 

(“previous-day water consumption”). It explained 54–66% of the variance of the dependent 

variable. The remaining variables were of minor importance, except variable x4 in models II 

and IV. 
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Table 3. Models of water consumption and their selected statistics (x1 – previous-day water 

consumption, x2 – maximum daily temperature, x3 – daily sum of precipitation, x4 – average daily 

relative humidity, x5 – average daily temperature). 

Model Variable 

Statistics 

R2variance 
Partial 

correlation 

Semipartial 

correlation 
Tolerance p 

M1 (Toruń – 

year) 

WT_year = 7640.52+0.779x1+31.307x2-79.938x3 

x1 0.650 0.142 0.083 0.892 0.000 

x2 0.007 -0.158 -0.093 0.991 0.000 

x3 0.007 0.787 0.740 0.899 0.000 

M2 (Toruń – hot 

period) 

WT_hot = 18984.14+0.65x1-94.94x2+45.18x3 

x1 0.606 0.715 0.575 0.788 0.000 

x4 0.074 -0.415 -0.257 0.821 0.000 

x5 0.003 0.096 0.054 0.848 0.001 

M3 (Żnin – year) 

WZ_year = 329.94+0.792x1+1.956x2-3.748x3 

x1 0.661 0.793 0.749 0.896 0.000 

x5 0.003 0.115 0.067 0.877 0.000 

x3 0.004 -0.103 -0.059 0.977 0.000 

M4 (Żnin – hot 

period) 

WZ_hot= 749.60+0.687x1-3.103x2+2.187x3 

x1 0.542 0.704 0.650 0.896 0.000 

x4 0.025 -0.229 -0.155 0.938 0.000 

x5 0.002 0.071 0.047 0.927 0.018 

 

Models M1 and M2 built for Toruń have the best forecast accuracy according to the 

selected evaluation criteria (Table 4). M2 was assessed as having forecast quality better 

than M1,butonly according to criterion E. At the same time, a slight difference in value 

(between M1 and M2) for the other criteria should be noted. All the criteria indicated much 

weaker forecast quality in the M3 and M4 models.  

Table 4. Forecast quality indices according to the selected criteria. 

Model 
Criterion 

E RMSE NRMSE MAPE [%] 

M1 (Toruń – year) 0.418 1748.295 0.050 3.542 

M2 (Toruń – hot period) 0.513 1886.063 0.053 4.099 

M3 (Żnin – year) 0.289 141.115 0.099 6.958 

M4 (Żnin – hot period) -0.085 166.968 0.111 7.979 

5 Discussion 

The set of explanatory variables identified to construct each individual model differed. The 

differences between the variables in the year model and the warm-period model seem 

understandable. In models for the warm period, relative humidity is more important, while 

atmospheric precipitation is less. The reasons can be found in the high variability of the 

second of these parameters. This applies particularly to warm periods, when intense rainfall 

usually occurs on one, or a few, days a month. The relative humidity parameter indirectly 

provides information on both rainfall (high values) and evaporation (low values). To some 

extent it indicates plants’ water needs. As shown by numerous studies, the watering of 
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gardens and lawns is the main source of increased water consumption in the warm period 

[11–12]. 

The differences between the variables in the year models for the selected towns 

appear to be interesting. This may be due to the sizes of the two towns, and to their local 

conditions. However, this is somewhat countered by the compatibility in the sets of 

variables for their warm-period models. This is thus most likely a result of the location of 

the meteorological station from which data for Żnin town was obtained. Despite the 

station’s proximity (about 20 km from Żnin), some of the parameters it records may not 

entirely reflect the town’s prevailing conditions. Such parameters may include the sum of 

precipitation (a very spatially variable parameter, especially in the warm period) and 

maximum temperature (which often depends on local conditions).  

The models constructed differed in forecast accuracy. The models for Toruń obtained 

much better forecast quality assessment criteria values. This may be in part due to the 

aforementioned problem with the meteorological data for Żnin. However, what seems more 

important is the specificity of local conditions and associated water consumption 

characteristics in a small town. Smaller water supply systems are more susceptible to 

variability in water consumption, as it can be caused by a small group of consumers. This 

means that forecasting water consumption is more difficult in a small town than in a large 

one.  

 One problematic issues in the built models is the very large significance of the x1 

variable (“previous-day water consumption”). It results in a clear shift in the graph showing 

forecasted values in relation to observed values (Fig. 2). In all the constructed models, the 

largest forecasting errors were found on days of sudden changes in water consumption. As 

a result, the models are ineffective for forecasting extreme situations. To improve forecast 

quality, it appears necessary to expand the model with other variables that will balance out 

that weighting. This is confirmed by the rather low determination index value. Research 

results [13–14] indicate that one such variable could be a “day of the week” variable. The 

variation in amount of water consumed on particular days of the week stems from the 

normal cycle on which society functions and the activity of economic entities [15]. The 

main difference is between water consumption on Monday to Saturday versus consumption 

on Sundays and public holidays. With the “day of the week” variable being qualitative, the 

information is usually coded binarily. This work did not use that variable due to the PCA 

method’s limitation in taking into account binary coded data. 
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Fig. 2. Matching of forecasted values to observed water consumption in 2017 in Toruń and Żnin. 

6 Summary 

Comparative analysis of the forecasting models for water consumption in the towns of 

different sizes showed that the models built for the larger of the two (Toruń) had better 

forecast accuracy. This was mainly due to the water supply system in the small town (Żnin) 

being less resilient to sudden, short-term changes in consumers’ water use. In addition, the 

meteorological data source used in constructing the prognostic model was shown to have 

been important. Using meteorological data from a station located outside the town can 

significantly affect model quality. In the case of towns without meteorological stations, it is 

in the interest of water and sewage companies to have their own measurement system. 

Modern technical solutions make building and maintaining such a system relatively 

inexpensive. This is especially true when we consider the benefits of well constructed 

forecasting models, which apply particularly to supporting decision-making in the design, 

development and maintenance of water supply networks, and in the implementation of 
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procedures to optimise the operation of pumping stations, water treatment plants and 

sewage treatment plants [16]. 

The work demonstrated the effectiveness of the PCA method in determining 

meteorological variables for water consumption forecasting models. At the same time, the 

method was shown to be limited in terms of its inability to handle qualitative data. As a 

result, the constructed models have fairly low forecasting effectiveness for days with 

sudden, large changes in water consumption. Their practical use is thus limited. The quality 

of forecasts would probably be improved by including a “day of the week” variable.  
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