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Abstract. An increasingly frequent problem of people living in urban 

agglomerations is the occurrence of odour nuisance. Although the source 

of these nuisances is different, their common feature is that they are 

a complex mixture of odour compounds with different odour thresholds. 

However, from a practical point of view, the most valuable would be 

a direct link between the odour intensity and the results of on-line 

analytical air monitoring. Such a possibility is created by the use of 

electronic noses (devices that are supposed to imitate the human sense of 

smell) to measure odours. The paper presents the use of an electronic nose 

combined with multiple liear regression model (MLR) to determine the 

odour intensity of the two-component mixture samples of commonly 

known odour compounds: trimethylamine (TMA) and triethylamine (TEA) 

in concentration range 50–200 ppm v/v. The obtained results were 

compared with the theoretical values determined using Zwaardemaker and 

euclidean additivity (EA) models. For high concentrations of substances in 

the mixtures (> 150 ppm v/v), the masking effect was observed.  

1 Introduction  

The ability to identify and distinguish odour substances for some time was possible only 

through the human sense of smell. With the development of science and technology, there 

is a growing interest in devices constructed and functioning in the image of human senses. 

Over the last 30 years, analytical systems have been developed that could in some ways 

replace human sense of smell [1–3]. Devices that have aroused interest due to the use of  

a wide range of chemical sensors in their construction are electronic noses. These devices, 

being analogues of the sense of human smell, allow their application in many fields of 

science and industry, such as: medical diagnostics, environmental protection, food and 

chemical industry or criminology [4–7]. Electronic noses enable a holistic analysis of the 

composition of the gas mixture, without the need to separate and identify its individual 

components [8, 9]. In comparison to other techniques used to analyze odours such as 

olfactometry or gas chromatography, electronic noses have additional advantages. In 

relation to olfactometric techniques, there is a lack of olfactory adaptation phenomenon and 

having trained personnel with a specific olfactory perception. In relation to 
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chromatographic techniques, electronic noses are characterized by a short analysis time and 

a lower price of the device. Electronic noses with their advantages and certain limitations 

complement the above-mentioned measuring techniques used for odour analysis. 

The smell, which is a sensual impression, is relatively difficult to quantitative 

description. Four basic odour parameters are determined: odour concentration, odour 

threshold, odour intensity and hedonic tone. However, the values of these parameters 

determined for mixtures of odour substances are not additive. This is due to the occurrence 

of the odour interactions based on the mutual masking, strengthening or weakening of 

odours. Studies on the types of olfactory interactions have been conducted for a very long 

time, but so far have not led to the explanation of the mechanism of these processes. The 

objects of experimental research are usually air samples containing only two or three types 

of odorants [10, 11]. 

The paper presents the use of an electronic nose to determine the odour intensity of the 

two-component mixture samples of trimethylamine (TMA) and triethylamine (TEA) – two 

commonly known odour compounds. The results were compared with the theoretically 

determined values. 

1.1 Odour intensity 

The odour intensity is the intensity of the smell, i.e. the strength of the olfactory sensation, 

which is associated with the frequency of nerve impulses in a given olfactory receptor. The 

intensity depends on the amount of the odorants, which are inhaled with air. They come 

into contact with olfactory chemoreceptors, so the intensity depends on the concentration of 

the compound in the inhaled air. The most frequently used mathematical equations describe 

the dependence of the odour intensity on the concentration of odorants. They are the 

expression of psychophysical rights of a general nature and concern the perception of all 

sensory impressions. Two equations are commonly used to describe the odour intensity: 

Weber-Fechner law (1) and Stevens's power law (2). 

𝐼 = 𝑘𝑊−𝐹 ∙ 𝑙𝑜𝑔
𝑐

𝑐𝑂𝑇
       (1) 

𝐼 = 𝑘𝑆 ∙ 𝑐𝑛        (2) 

where: I – odour intensity; kW-F, kS – equation coefficients; c – compound concentration;  

cOT – odour threshold, n – empirical constant value. 

Equations (1) and (2) are applicable to individual compound concentration. The 

combination of experimental values for pure chemical compounds does not allow to predict 

the intensity of their mixtures. So it is not an additive amount. This is due to odour 

interactions occurring in the odorant mixture, which contribute to strengthening, weakening 

or masking one fragrance with the other [12]. 

In the case of mixtures, mathematical models are used that allow to estimate the odour 

intensity of the mixture using intensity values for its individual components. One of these 

models is the Zwaardemaker model. It is often called the vector summation model. This 

takes on form (3) for a two-component mixture and form (4) for a three-component 

mixture. The coefficient α found in the equations (3) and (4) is approximately constant for 

one pair of mixture components. 

𝐼𝐴𝐵 = √𝐼𝐴
2 + 𝐼𝐵

2 + 2 ∙ 𝐼𝐴𝐼𝐵 ∙ cos 𝛼𝐴𝐵     (3) 

𝐼𝐴𝐵𝐶 = √𝐼𝐴
2 + 𝐼𝐵

2 + 𝐼𝐶
2 + 2 ∙ 𝐼𝐴𝐼𝐵 ∙ cos 𝛼𝐴𝐵 + 2 ∙ 𝐼𝐵𝐼𝐶 ∙ cos 𝛼𝐵𝐶 + 2 ∙ 𝐼𝐴𝐼𝐶 ∙ cos 𝛼𝐴𝐶  (4) 
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 Recently, studies on the determination of this coefficient for compounds from the 

group of aldehydes, esters or aromatic hydrocarbons were carried out by researchers who 

determined its value at the level of: 0.1, 0.2 and 0.3 respectively [13]. 

 Another model used to estimate the odour intensity is the EA model (Euclidean 

Additivity). The intensity of the mixture is determined using equation (5). This is a special 

case of the Zwaardemaker model with the cos 𝛼 = 0 value. 

𝐼𝐴𝐵 = √𝐼𝐴
2 + 𝐼𝐵

2        (5) 

1.2 Electronic nose 

Active development of industry is inevitably connected with the emission of chemical 

compounds to the atmosphere. Taking into account standards and legal regulations 

regarding the emission of dangerous compounds into the environment, innovative 

technologies have been developed to identify and determine the concentrations of odorous 

volatile compounds [14]. In order to provide a more precise and objective assessment of the 

odorous compounds than in the case of sensory analysis, an electronic nose was constructed 

using chemical sensors. These sensors initially appeared individually, but with the 

development of technology began to create special gas sensor matrices, which are equipped 

with several, or even more, gas chemical sensors [15].  

The electronic nose was first developed in 1982 by Dodd and Persuad to imitate the 

sense of human sense of smell. The device was designed mainly to detect volatile chemical 

compounds emitted from various sources. An electronic nose (e-nose) is structurally 

constructed from four blocks: sampling, detection, data processing and pattern recognition 

system (Figure 1). 

 

Fig. 1. Electronic nose systems. 

The concept of an electronic nose is collinear with a human sense of smell. Its operation 

is based on the use of sensors matrix, which after exposure to odours generate a proper set 

of signals. The sampling system has the task of transferring volatile molecules from the 

atmosphere to the sensors array that are enclosed in the chamber under constant 

temperature and humidity conditions. In the detection zone, chemical gas sensors are 

located. They convert the chemical information into an analytically useful electric signal. 

The most common sensors used for building electronic noses are: electrochemical sensors 

(EC), semiconductor sensors (MOS), conductivity sensors with a layer of conductive 
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polymers (CP), surface acoustic wave (SAW) sensors, piezoelectric sensors (QMB) and 

photoionization sensors (PID) [9].  

The determination of odour intensity using an electronic nose requires the use of 

calibration models. To develop such models, a set of explanatory variables is used (signals 

from electronic nose sensors) and a set of dependent variables (values of the odour intensity 

expressed in the verbal scale). One of the most popular calibration techniques are: 

multiparameter linear regression (MLR), principle component regression (PCR), partial 

least squares regression (PLS) and artificial neural networks (ANN). These methods have 

been successfully applied to monitor changes in the aroma concentration in such processes 

as: biofiltration or wastewater treatment as well as to support measurements made using 

dynamic olfactometry or sensory analysis [16–23]. 

The presented research uses a self-designed and constructed prototype of an electronic 

nose equipped with eight chemical sensors: 1 PID sensor, 2 electrochemical sensors and 5 

semiconductor sensors. The models of the sensors used are shown in Table 1. 

Table 1. Types and models of sensors used in the e-nose prototype. 

Sensor number Model Detected substances 

S1 MiniPID volatile organic compounds 

S2 FECS44-100 ammonia, amines 

S3 FECS50-100 hydrogen sulfide 

S4 TGS2600 air pollutions 

S5 TGS2602 volatile organic compounds 

S6 TGS2603 air pollutions (triethylamine, mercaptanes) 

S7 TGS823 organic solvent vapours 

S8 TGS8100 hydrogen, ethanol 

2 Experimental  

A group of probants took part in the research, who were to evaluate the prepared samples in 

terms of odour intensity. The research team consisted of 6 people who were familiarized 

with the guidelines concerning sensory tests. They assessed each of he prepared samples 

using a seven-grade verbal scale: 0 – not perceptible, 1 – very weak, 2 – weak, 3 – distinct, 

4 – strong, 5 – very strong, 6 – extremely strong. 

Five samples of trimethylamine and trimethylamine were prepared in deionized water at 

the following concentration levels: 50, 100, 200, 400 and 800 ppm v/v. The samples were 

subjected to sensory analysis in terms of the odour intensity. A group of six probants 

performed the odour evaluation using a verbal-point scale, each measurement was repeated 

five times for each person and the concentration level. The average values of the odour 

intensity for aqueous solutions of the analyzed substances are presented in the Table 2. 

Table 2. The average values of the odour intensity of trimethylamine (TMA) and triethylamine 

(TEA) aqueous solutions. 

Concentration, ppm v/v 
Average odour intensity (sensory analysis) 

trimethylamine triethylamine 

50 0.8 0.2 

100 1.4 0.9 

200 2.4 1.6 

400 2.8 2.5 

800 3.6 3.2 

 

Samples with the same concentrations were tested using an electronic nose prototype. 

Three analyzes were performed for each substance and concentration. To develop the 
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calibration model, the maximal value of the sensor's signal after the exposition on a given 

sample was used. An example of the MOS sensor response is shown in the Figure 2.  

 

 

Fig. 2. MOS sensor signal (the interval between the red crosses indicates the baseline).  

On the basis of the obtained signals using a multiparameter linear regression (MLR), an 

equation was determined that links the fragrance intensity of the sample to the signal from 

individual sensors [21]. After estimating the confidence interval of the model parameters 

statistically non-significant model parameters were removed from the equation. The 

equation takes the form of (6): 

𝐼 = 12.7574 − 0.0143 ∙ 𝑆2 − 0.0142 ∙ 𝑆4 + 0.0118 ∙ 𝑆6 + 0.0016 ∙ 𝑆8  (6) 

3 Results and discussion  

Twenty five binary mixtures of TMA and TEA were prepared. Next, the theoretical values 

of the fragrance intensity with the use of Zwaardemaker (IZw) and EA (IEA) models were 

determined for them. For each sample an electronic nose analysis was also performed. The 

odour intensity was determined using the model (6).  The obtained results are presented in 

the Table 3. 

Analyzing the results presented in Table 4, it can be concluded that in the case of 

studied mixtures Zwaardemaker model and the EA model correlate to each other, giving 

similar results. However, it should be noted that in the case of high concentrations of the 

amines (trimethylamine and triethylamine) in the mixture, the difference between the 

results obtained using e-nose with MLR model and theoretical models are greater than 10% 

(relative error related to EA and Zwaardemaker model). This fact indicates the presence of 

odour interactions in the tested mixtures. In addition, all these values are negative. This 

indicates the occurrence of masking effect. 
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Table 3. Odour intensity values determined using Zwaardemaker model, EA model and using 

electronic nose. 

Mixture composition 

IZw IEA Ie-nose 

Error 
𝑰𝑬𝑨 − 𝑰𝒆−𝒏𝒐𝒔𝒆

𝑰𝑬𝑨

 

Error 
𝑰𝒁𝒘 − 𝑰𝒆−𝒏𝒐𝒔𝒆

𝑰𝒁𝒘

 CTMA, ppm v/v CTEA, ppm v/v 

50 50 0.84 0.82 0.80 -2% -5% 

50 75 1.07 1.00 1.05 5% -2% 

50 100 1.30 1.22 1.31 8% 1% 

50 150 1.67 1.58 1.66 5% -1% 

50 200 1.95 1.85 1.91 3% -2% 

75 50 1.25 1.23 1.21 -1% -3% 

75 75 1.43 1.36 1.31 -3% -8% 

75 100 1.62 1.52 1.55 2% -4% 

75 150 1.94 1.82 1.87 3% -4% 

75 200 2.20 2.07 2.25 9% 2% 

100 50 1.54 1.52 1.45 -4% -6% 

100 75 1.70 1.62 1.72 6% 1% 

100 100 1.87 1.76 1.90 8% 2% 

100 150 2.16 2.03 2.05 1% -5% 

100 200 2.40 2.25 1.76 -22% -27% 

150 50 1.95 1.93 2.00 4% 3% 

150 75 2.09 2.01 2.06 2% -1% 

150 100 2.24 2.12 2.07 -3% -8% 

150 150 2.50 2.35 1.83 -22% -27% 

150 200 2.71 2.54 2.09 -18% -23% 

200 50 2.24 2.22 2.36 7% 6% 

200 75 2.37 2.29 2.35 3% -1% 

200 100 2.51 2.39 2.57 7% 2% 

200 150 2.75 2.59 2.21 -15% -20% 

200 200 2.95 2.77 2.38 -14% -19% 

  

4 Conclusions  

The obtained results presents that electronic noses can be successfully used to estimate the 

fragrance intensity of air samples especially in areas where amine compounds are 

responsible for the occurrence of odour nuisances. Research conducted on binary odour 

compounds mixtures shows that simple theoretical models do not actually reflect all 

interactions occurring in the studied samples. Conformity of results was obtained only for 

low concentrations of substances in the mixture (< 150 ppm v/v). This is due to the 

limitation of models, especially the EA model, which does not take into account the 

interaction coefficient at all. Only two-component mixtures were used in the tests. In 

further studies, it is planned to compare the results with 3-5 component mixtures. This 

approach determines the use of more sophisticated pattern recognition algorithms, i.e. 

artificial neural networks or fuzzy logic systems. However, as shown in the paper, for 

simple systems it is possible to use a MLR model with relatively high accuracy  

(𝑅2 =  0.917). 

In the conducted research, it was also shown that due to the convergence of results, the 

mechanisms of identifying fragrances implemented in the electronic nose are very similar 

to the mechanisms occurring in the human sense of smell. Additional advantages of using 

e-noses are the ability to omit the initial sample preparation stage, as well as the ability to 

work in the field and carry out measurements in the on-line mode. It is possible to optimize 
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the number and type of sensors used to detect specific substances, which will allow to 

create devices dedicated to a specific application. Dynamic progress in the field of 

analytical devices from the group of electronic noses is expected to contribute to the 

development of odours analysis. 

 
The investigations were financially supported by the Grant No. UMO-2015/19/B/ST4/02722 from the 

National Science Centre, Poland. 
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