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Abstract. The temporal and spatial prediction of nitrogen dioxide (NO2) is very essential because of its 

harmful impacts on the environment. Its forecasting would help, for example, to regulate predictively the 

traffic flow. Traditionally, air quality measurements are performed at fixed locations or dedicated mobile 

laboratories. In this work, we installed a measurement technology in a vehicle and connected it to the 

vehicle measuring system in order to be able to evaluate further parameters. To this end, we selected one 

route profile and continuously measured the NO2 concentration in real-time traffic. We have driven this 

route profile several times in succession. The rationale of this approach is the idea that several vehicles are 

equipped with the same measurement technology and drive on the same route profile within the same time. 

The contribution of this work is to forecast the NO2 concentration for a given route profile under constant 

weather conditions based on mobile measurements. To this end, we divided the recorded data into training 

and test data and investigated five different approaches for forecasting the NO2 concentration on the 

respective route profile. Among other aspects, we used cross-validation methods in order to assess the 

prediction quality. Results show that sliding-window approaches using the averaging of previous rounds are 

most suitable for predicting NO2 concentration. Furthermore, our data reveal that the prediction quality is 

improved when the test data immediately follow the training data. 

1 Introduction  

The NO2 concentration is one of the harmful pollutants to 

the environment and public health. One of the causes for 

the formation of this pollutant is industry and traffic [1, 

2]. Usually, official traffic air monitoring stations, located 

next to the roadside, measure the air quality. The hourly 

limit value in European cities for NO2 concentration, 

which may be exceeded 18 times a year, is 200 µgm
-3

 and 

the average annual limit value is 40 µgm
-3

 [3]. In this 

regard, cities aim at improving the air quality, and thus, 

protect the human health and avoid financial sanctions.  

In addition to classical air quality studies based on fixed 

locations or mobile laboratories [4, 5], there are scientific 

studies based on mobile measurements. For instance, 

Elen et al. and Liu et al. describe a vehicular based 

mobile approach for measuring fine-grained air quality 

and other pollutants in real time [6, 7]. Furthermore, 

bicycles have already been used to measure ultrafine 

particles, black carbon, and carbon monoxide [8, 9]. The 

advantage of this measurement method over the 

stationary measuring station is its proximity to potential 

emitters in road traffic, the dynamics of the measurement, 

and greater coverage.  

In addition to measuring the current state, predicting 

air quality is also of particular importance. The 

development of prediction models helps to provide early 

warnings to the population and take actions before 

tolerance limits are exceeded. In this respect, scientific 

approaches exist to make both, temporal as well as spatial 

forecasts. In [10, 11, 12 and 13], for example, attempts on 

the basis of stationary measurement data were made to 

predict the NO2 concentration using various methods in 

the field of machine learning. Alternatively, different 

dispersion models based on mathematical or statistical 

approaches have been applied in order to investigate the 

spatial forecasting of pollutants [14, 15]. 

In order to extend the prediction models based on 

stationary measuring stations or models, we equipped a 

vehicle with NO2 measuring technology for our work. 

The measuring device was connected to the measuring 

system of the vehicle so that we also recorded specific 

vehicle parameters from internal (CAN) messages. 

Afterwards, we selected a route profile in which there is 

also a stationary measuring station next to the roadside. 

Subsequently, we drove this route profile 23 times and 

continuously measured the NO2 concentration in real-

time traffic. After dividing the measured data into 

training and test data, we investigated the prediction 

quality of different techniques, for example, using cross-

validation. The contributions of this work are: 

• We investigate different techniques in order to forecast 

NO2 concentration with maximum accuracy for the 

selected route. 

•We propose a lightweight, mobile measuring system that 

includes both, environmental as well as car-specific 

parameters, and thus, allows for more precise data 

collection and a higher accuracy in the prediction phase. 

•A comprehensive comparison of the prediction 

techniques used, based on real-world data. 
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2 Background 

In this section, we describe in more detail the selected 

measurement technology and measurement methods. 

Furthermore, we explain the driving route profile. 

Subsequently, the method of cross-validation is 

introduced to assess the forecasting approaches. 

2.1. Measurement Technology 

We installed the measuring device "NO2 / NO / NOx 

Monitor Model 405 nm" from “2B Technologies, Inc.” on 

the vehicle. The principle of measurement is a direct 

measurement of NO2 by absorbance at 405 nm in the 

concentration range 0-10,000 ppb with an accuracy of 

2 ppb. 

This device is designated as a Federal Equivalent 

Method (FEM) for NO2 compliance monitoring in the 

United States but not in Europe [16]. Therefore, the 

measuring method does not comply with the official 

European directives and thus is not an officially licensed 

measuring technique. In comparison, the measurement 

method of road measuring stations according to the 22nd 

Ordinance to the Federal Immission Control Act 

(BImSchV) for NO2 concentration is based on the 

chemiluminescence method [3, 17]. However, both 

methods mentioned above have already been compared 

with each other, concluding that the data quality of our 

measuring device used is given [18]. 

2.2. Route Profile 

We used the measuring technique described in the 

previous section in order to measure the NO2 

concentration on a route profile. This route is 680 m long 

and can be understood as a circular with right turn 

process. Fig. 1 shows schematically the respective start 

and end point of a circle as well as at which points traffic 

lights and the air measuring station are located. 

 

Fig. 1. Route profile which was driven on 23 times and consists 

of three traffic lights and a traffic air monitoring station. 

 

We drove the route profile a total of 23 times in 

succession in order to make a statement about how the 

NO2 concentration changes on the route for following 

vehicles. The rational of this procedure is the idea that 

several vehicles are equipped with the same measurement 

technology and drive on the same route profile within the 

same time. External conditions regarding weather and 

time, which have an impact on the NO2 concentration [4, 

5], can be seen in Table 1. 

 

 

 

Table 1. External conditions to weather which we assumed to 

be constant. 

Weather and Time Data 

Time 2-3 pm 

Temperature 5.5 – 5.7 °C 

Precipitation 0 ltr/m² 

Wind Direction 220 – 240 ° 

Wind Speed 2 – 2.7 m/s 

2.3. Cross-Validation 

After we have presented the route profile on which the 

NO2 concentration was measured, we explain in more 

detail one of the methods used in this work.  

Cross-validation methods are test methods of data 

analysis that are used, among other aspects, in data 

mining where the goal is prediction. There are several 

types of this method, such as simple, stratified or leave-

one-out cross-validation [19, 20]. In this work, the 

process of simple cross-validation is described in more 

detail and then applied.  

In k-fold cross-validation, the forecast results are 

evaluated by partitioning the original data set into k 

equally sized (length m) subsets T1,…,Tk consisting of N 

elements. Furthermore, a distinction is made between a 

training set and test set. k passes are started in which the 

i-th subset of Ti is used as the test set and the remaining 

k-1 subset of Ti is used as the training set. The total error 

rate is calculated as an average from the individual error 

rates of the k individual runs [19, 20, 21]. 

3 Forecasting Methodology 

In this section, we describe in more detail the data 

preparation. Subsequently, we explain the forecasting 

approaches, used in this paper, and their application. 

Finally, we present an estimation for the quality of each 

forecasting approach. 

3.1 Data Preparation 

As described in the previous section, we connected 

the measurement device to the vehicle's measuring 

system. All channels or information stored on the 

measuring system have different transmission frequencies 

(asynchronous) because of different priorities on the 

CAN. This means, for example, that the value for the 

driving speed is transmitted more frequently in a time 

unit than the value for the NO2 concentration. 

Consequently, all recorded signals must be normalized to 

the same equidistant form in order to be able to deduce 

the distance covered from the driving speed. 

In this work, we chose a linear interpolation based on 

the time vector with an increment of 0.2 s. In order to 
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infer distant-equivalent signals from time-equivalent ones, 

asynchronous distance-based units were initially 

extracted from the velocity signal. Subsequently, we used 

the linear interpolation (based on the distance) with an 

increment of 1 m in order to calculate signals with an 

equivalent distance. Afterwards, we created a 23 x 680 

matrix. The row size stands for the number of rounds and 

the column size for the NO2 concentration recorded or 

interpolated per 1 m. 

In addition, we have taken into account the delay time 

and the reaction time of our measurement device by 

shifting the measurement data of the NO2 concentration 

by a certain time interval. This is particularly important to 

determine the location of the measured NO2 

concentration. 

3.2 Forecasting Approaches 

In order to predict the NO2 concentration along the route 

as described in Section 2.2, we used different approaches 

to determine the NO2 concentration for the subsequent 

round. Depending on the approach, we have taken the 

individual rows of all columns as test or training data sets. 

In Fig. 2, we show the different approaches, in particular, 

how differ in the training data used. 

Approach 1 describes the forecasting of the following 

round based on the previous round. We have assumed 

that the next round will be the same as the previous round. 

We considered the one round as training data and the 

directly following round as test data. These data were 

then compared with one another in order to make a 

statement about the forecasting quality.  

For the approaches 2 & 3 we calculated the mean over 

the complete distance of previous laps. For approach 2, 

we have not assumed the number of previous rounds to 

be constant. Rather, the number of rounds per iterative 

step increased so that we then calculated the mean value 

for these rounds (always starting with round 1). Finally, 

we compared the mean (dashed box over the previous 

laps) with the round directly after (i.e., the round 

predicted to be predicted).  

Approach 3 differs from approach 2 by the number of 

rounds over which we have calculated the mean value. 

Here, we have calculated the mean over the last three, 

four, five and six rounds directly before the round to be 

predicted (sliding-window). These data were then 

compared with one another.  

In approach 4 we assumed that the NO2 concentration 

of each round can be forecasted by calculating the mean 

value of all driven rounds except the round to be 

predicted. Especially here we have used the method of 

cross-validation from Section 2.3. The round to be 

predicted can be seen as test data and the mean value of 

the remaining rounds as training data.  

In the last approach, we also applied the method of 

cross-validation. Compared to the first approach, we 

compared not only the following rounds but every single 

round with the other rounds. For example, the first round 

was assumed as training data and the remaining data as 

test data. These data were then compared with one 

another in order to make a statement about the 

forecasting quality. 
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Fig. 2. Different approaches to forecast the next round. The 

dashed lines indicate the rounds over which the mean value is 

calculated. Approaches 2 and 3 are similar and differ only in the 

size of the training data set (sliding-window). Cross-validation 

was used especially for the last two approaches. 
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3.3 Forecasting Quality 

For all approaches, presented in the previous subsection, 

we discuss the forecasting quality in more detail in the 

following. To this end, we calculated the percentage error 

per approach between the training and test data set in 

order to be able to make a statement about the forecast 

quality. To this end, we have assumed the Root Mean 

Squared Percentage Error (RMSPE) as a measure for 

assessing the forecasting quality. It indicates how well 

test data is adapted to existing training data, or how much 

a forecast deviates on average from the historical data 

(i.e., actual observed values). The larger the RMSPE, the 

greater the deviation from the model. In the literature, the 

RMSPE is used in many prognosis error evaluations, for 

example in regression based and statistical methods [22, 

23]. The RMSPE is calculated as follows [23]: 

 

N  = Number of elements in the column (680) 

T  = Training data 

P  = Testing data (Predicted data) 

 

The difference between the training and test data set 

of each column entry (the NO2 concentration per 1 m on 

the route profile) is calculated and set in relation to the 

training data set per entry. Afterwards, the ratio is 

squared and set in relation to the total data size. Finally, 

the root is calculated. Using this approach, we calculated 

the prediction error of a single (predicted) round against 

other rounds. 

Afterwards, we use box-plot diagrams to asses which 

approach in section 3.2 can be used in order to realize the 

lowest prediction error (mean). The box-plot diagrams 

are suitable for representing the distribution and 

dispersion of the RMSPE. To this end, the error of each 

approach on mean (+) and median (dashed-line) as well 

25th and 75th percentile and the minimum and maximum 

deviation are displayed in Fig. 3. 

Minimum Maximum

25th percentil 75th percentil

Median

Mean

 

Fig. 3. General structure of the box-plot diagram 

4 Forecasting Methodology 

In this section, we present the results for our five 

approaches and discuss them afterwards. As an example, 

we will describe the results and the prediction quality for 

the first approach in more detail. To this end, we 

calculated the RMSPE between (i+1)-th round (testing 

data) and (i)-th round (training data). For this approach, 

we assumed that the next round corresponds to the 

previous round. We show the errors related to this 

approach in Table 2. 

Table 2. The table shows the RMSPE for the first approach, 

described in Fig. 2 

RMSPE based on the last round 

Round RMSPE Round RMSPE 

1st → 2nd 64,3 % 12th → 13th 47,6 % 

2nd → 3rd 82,5 % 13th → 14th 488,3 % 

3rd → 4th 566,1 % 14th → 15th 239,1 % 

4th → 5th 60,3 % 15th → 16th 52,5 % 

5th → 6th 65,2 % 16th → 17th 63,9 % 

6th → 7th 75,4 % 17th → 18th 63,1 % 

7th → 8th 78,1 % 18th → 19th 78,1 % 

8th → 9th 47,0 % 19th → 20th 33,2 % 

11th → 10th 38,5 % 20th → 21th 53,4 % 

12th → 11th 151,1 % 21th → 22th 76,1 % 

13th → 12th 34,8 % 22th → 23th 67,0 % 

 

The left column indicates the two rounds (observed & 

predicted) used for prediction. The right column specifies 

the respective RMSPE. The specified error in percent 

indicates how much the NO2 concentration of the 

following round deviates on average from the previous 

(actual observed) round. 

The table shows that the RMSPE varies widely from 

round to round. This depends, among other aspects, on 

the amount of traffic per round. It is also important in 

which intensity and form a vehicle ahead emits NO2, 

which is then absorbed by the measuring device (exhaust 

gas plume). We have not classified these as outliers in 

our database. It can therefore be assumed that RMSPE is 

only low if the traffic volume is identical to the previous 

round under constant weather conditions.  

Consequently, with this value, no reliable can be 

made whether the NO2 concentration for the next round 

will be higher or lower. Since presenting all tables would 

not fit into the page limit, we visualize the RMSPE 

values for all five approaches by means of box-plot 

diagrams in Fig. 4. Because the third approach is based 

on sliding window, we took the mean values of the NO2 

concentration of the previous three, four, five and six 

rounds as training data. These were then compared with 

the NO2 concentration of the following round. 
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Subsequently, the RMSPE was also calculated for 

each window size separately. Due to the largest 

maximum deviation varying considerably from the 

smallest one, we have divided the display into two areas 

with different scaling. The bottom range has an interval 

of 50 % ending at 200 % and the upper range has an 

interval of 1000 % starting at 500 %.  

First of all, our data reveal that the approaches 1, 4 & 

5 have the greatest dispersion. If the maximum errors are 

considered these results have a RMSPE of more than 

500 %. The minimum, median and mean errors of these 

three approaches are also larger than for approach 2 & 3. 

Similarly, the NO2 concentration of individual rounds 

differs considerably. Hence, we conclude that the result 

of predicting other rounds based on one round (including 

cross-validation) is worse than for the other two 

approaches. Based on our evaluation, we argue that 

approaches 1, 4 & 5 are, on average, unsuitable for 

forecasting subsequent rounds under the assumption of 

unchangeable weather parameters. 

The dispersion of the second and third approach are 

considerably smaller. Hence, the prediction with these 

methods is suitable on average. However, our data reveal 

that the basis on which the forecast is based with at least 

50% accuracy requires larger historical data series than 

one. The second method seems to produce lower RMSPE, 

but a sliding-window method leads to a similar prediction 

quality.  
In the fourth approach, a mean is formed analogous to 

approaches 2 and 3. However, the crucial difference is the 

correlation between the training data and the test data 

directly following the training data. This shows that the 

mean value computation, based on previous rounds, only 

leads to a low RMSPE if the test data follows the training 

data directly. 

 

 

 

 

 

 

 

 

 

 

 

 

5 Conclusions and Future Work 

In this paper we have first described how we measured 

the NO2 concentration. Subsequently, we investigated 

different approaches in the field of data mining, with the 

help of which the NO2 concentration of the following                 

rounds can be forecasted. We have used both simple 

approaches and methods of cross-validation. In order to 

show the error between the training and test data, we first 

calculated the RMSPE and then visualized the 

distribution or dispersion in a box-plot diagram. 

We have shown that approaches without previous 

averaging of the NO2 concentration over certain rounds 

generate higher RMSPE than approaches with averaging. 

We have also shown that averaging is not sufficient for 

significantly low RMSPE. Rather, a training data set must 

be generated directly before the test data set. Different 

traffic conditions and, among other aspects, waste gas 

plumes result for each round of traffic, so that approaches 

with no averaging are unsuitable.  

The current work can be expanded by equipping 

several vehicles with suitable NO2 measuring technology 

in order to make a comprehensive statement about the 

quantity and quality of the measurements. Based on this, 

predictions for route sections can then be derived using 

the methods described above. Furthermore, the NO2 

concentration should also be measured at different 

weather conditions and times (especially rush hour) on a 

selected route in order to take into account the influences 

of these parameters. 
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