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Abstract. A pressure method to solve the problem of flow distribution in a 

pipeline system based on the static pressure use was proposed in the study. 

A modification of the identification method to search for the local resistance 

coefficients of the ventilation system sites was provided. Static pressure and 

flow rate as identifying values were used in the developed approach. The 

applicability of the identification method for local resistance of the gas 

removal system to be found was shown. 

1 Introduction 

When analyzing the systems operation supporting the gas flow, different research methods 

can be used [1,2]: the theory of hydraulic circuits [3], 3d modeling methods [4,5], test 

measurements of real-life objects [6]. In this case, the results obtained by one method in other 

methods are certain to be used [1]. An example is the identification problem of a network 

model according to test measurements of the current ventilation system [6]. Currently, there 

is a varied mathematical apparatus aimed at solving such problems in pipeline systems [1,3,7-

12]. However, the use of these methods for solving the flow distribution and identification 

problems in ventilation systems seems to be difficult. They are associated with the use of 

total pressure in solving problems of flow distribution and identification in the pipeline 

system [13]. 

Consider an example of the off gas for an electrolysis production in the aluminum plant 

(Fig. 1). It is designed for electrolysis gases to be discharged from electrolysis baths to gas 

purification. The system within one potroom is divided into 4 sets with 20 electrolysis baths 

in each. In the given system, uncontrolled parasitic air inflows into the off gas through 

fabrication holes (measurement hatches, dielectric loadings) is observed.  

The total value of such parasitic air inflows is up to one third of the total system flow -

rate at the system exit [6]. For a small diameter hole (measurement hatches) on the pipe wall, 

this parasitic flow - rate has been determined by the following relation [14]: 
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where 𝐶𝑒 𝑙 is an entrainment ratio,𝑑𝑙 is a hole diameter (m), ∆𝑝 is a difference of static 

pressure in the pipe and in the environment (Pa), 𝑞𝑙is a flow - rate(nm3 / h). Similar relations 

are applied to other parasitic air inflows associated with pipe walls leakage. Pressure losses 

in all other sections are described by the Bernoulli equation [14,15]: 

 ∆(𝑝𝑖 + |𝜌𝑣2 2⁄ |𝑖 + 𝜌𝑔𝑧𝑖) =  (𝜉𝑙 +
𝜆𝑙⋅𝐿𝑙

𝑑𝑙
)

|𝑞𝑙|⋅𝑞𝑙

2𝜌𝑠𝑙
− ℎ𝑙,  (2) 

where 𝑝𝑖is a static pressure (Pa), |𝜌𝑣2 2⁄ |𝑖  is a dynamic pressure (Pa), 𝜌𝑔𝑧𝑖  is a geometric 

pressure (Pa), 𝑣 is a velocity (m / s), 𝜆𝑙 , 𝜉𝑙is a linear and local resistance coefficient, 𝑑𝑙  is a 

hydraulic diameter (m), 𝐿𝑙  is a section length (m), ℎ𝑙  is a fixed head (Pa). The dynamic 

pressure is comparable to the static pressure, with the geometric pressure being low, 

compared to plumbing and heat supply systems in ventilation systems. 

 

 a 

 

b 

Fig. 1. The system of electrolysis production gas flue. 

a) electrolysis bath connection  

1 –electrolysis bath; 2 - air inflows; 3 - discharge; 4 - metering points; 

5 – collecting gas duct 

b) network 

The measurement technique in the ventilation system [16,17] allows one to determine the 

static pressure and flow - rate values at the measurement points, in some points only one of 

these values being available. The proximity of structural elements (local resistances) 

followed by an uneven flow make it difficult to measure the flow - rate which is unlikely to 

be measured because of the measurement hatches size. When measuring the system (Fig. 1), 

it was impossible to measure the flow-rate at 10% of the measurement points. 

In this case the problem of identification is to determine the local resistance coefficients 

of network sections, using the known static pressure and flow rate values. Identification 

coefficient of local resistance for some groups of identifiable branches are suggested to be 

the same due to availability of structurally identical network elements in their constructive 

and operating mode [1]. An example would be a section including an electrolysis bath and a 

discharge into a longitudinal gas duct (1-3 in Fig. 1). 

Enhancement of the currently available methods for calculating the flow distribution 

[3,7,8] and solving the identification problem [1,9-11], with the static pressure used when 

calculating, has been required.  

2 Research objective 

As a mathematical model for describing fluid flow in a network, a steady flow model of 

incompressible fluid has been taken. To represent the pipeline system, a directed graph is 

used [18], and the coupling matrix is as follows: 
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 Dil= {
   1,  if  l∈Oi,
-1,   if  l∈Ii,
0       otherwise

 (3) 

Here 𝑙 ∈ 𝑂𝑖  is the set of pipes (branches) coming from the 𝑖 -th node; 𝑙 ∈ 𝐼𝑖   is the set of pipes 

included in the 𝑖 -th node. The flow distribution problem in the network can be reduced to a 

combination of the law of conservation of mass in the node (4) and the resistance law in the 

branch (pipe) (5): 

 ∑ 𝐷𝑗𝑙𝑞𝑙𝑙∈𝑈𝑗
= 0 (4) 

 ∑ 𝐷𝑖𝑙𝑝𝑖 =𝑖∈𝑁 ℎ𝑙(𝑞𝑙) (5) 

Here N is the set of all network nodes; U is the set of all network branches; 

ℎ𝑙(𝑞𝑙)  is the pressure loss (Pa). Also, the set of nodes and the set of branches were naturally 

divided into two subsets: the boundary Nbdr and the calculated Nclc nodes, the boundary Ubdr, 

and the calculated Uclc branches [1]. The pressure is fixed in the boundary nodes; the flow - 

rate is in the boundary branches. 

The Bernoulli equation (2) is reduced to the following form ∆𝑝 =  (𝜉𝑙 +
𝜆𝑙⋅𝐿𝑙

𝑑𝑙
)

|𝑣|⋅𝑣

2
−

(ℎ𝑙 + 𝜌𝑙𝑔∆𝑧𝑖 + ∆ [
𝜌𝑣2

2
]

𝑖
). This allows one to solve the flow distribution problem in the 

hydraulic circuit, taking into account, within the same system of equations (4), (5), parasitic 

air inflows (1) and ordinary sections (2). 

The dynamic pressure for the boundary nodes is 0, for all others it is equal to the average 

flow rate value of the dynamic pressure of the flows going into this node: 

        |
𝜌𝑣2

2
|

𝑖
=

∑
𝑞𝑙

2

2⋅𝑠𝑙⋅𝜌
|𝑞𝑙|𝑙∈𝐼𝑖(𝑞)

∑ |𝑞𝑙|𝑙∈𝐼𝑖(𝑞)

⁄  (6) 

The identification problem is set as follows: Determine the minimum values of local 

resistance coefficients ‖ξm‖2 → min for identifiable branches and groups of identifiable 

branches satisfying the condition for minimum, distinguishing the calculated and 

experimental values ‖𝑀‖2 → 𝑚𝑖𝑛  of the static pressure  𝑀𝐼 = 𝑃𝐼 − 𝑝𝐼  , 𝐼 ∈ 𝑐𝑁 and the 

flow - rate 𝑀𝐼 = (
∂ℎ𝐼

∂𝑞𝐼
) ⋅ 

(𝑄𝐼 − 𝑞𝐼 ),   𝐼 ∈ 𝑐𝐸 at the control points 𝑐𝑁, 𝑐𝐸 under the system of equations (4), (5). 

Here 𝑃𝐼 , 𝑝𝐼 are measured and calculated static pressures at control points (𝑐𝑁),  𝑄𝐼 , 𝑞𝐼  are 

the measured and calculated flow rate at the control points(𝑐𝐸). The network topology, the 

geometrical dimensions of all sections are given. The condition for minimum of the required 

local resistances results from the maximum likelihood estimate [7,19]. 

2.1 Pressure method 

To solve the problem of flow distribution with respect to static pressure, the pressure method 

was used [3,7]. The value and pressure are found by an iterative cycle for pressure correction: 

    𝑝𝑖
𝐾+1 = 𝑝𝑖

𝐾 + 𝛿𝑝𝑖  (7) 
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∑ Δ𝑖𝑗(𝑎)𝑖∈𝑁 𝛿𝑝𝑖 = − ∑ 𝐷𝑖𝑙𝑞𝑙𝑙∈𝑈𝑗
, 𝑗 ∈ 𝑁𝑐𝑙𝑐

𝛿𝑝𝑗 = 0, 𝑗 ∈ 𝑁𝑏𝑑𝑟

Δ𝑖𝑖(𝑎) = ∑ 𝑎𝑙𝑙∈𝑈𝑙
,   𝑖 ∈ 𝑁𝑐𝑙𝑐

Δ𝑖𝑗(𝑎) = − ∑ 𝑎𝑙𝑙∈𝑈𝑙
,   𝑖 ∈ 𝑁𝑐𝑙𝑐 , 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗

𝑎𝑙 = {
(

∂ℎ𝑙

∂𝑞𝑙
)

−1

, 𝑙 ∈ 𝑈𝑐𝑙𝑐

0, 𝑙 ∈ 𝑈𝑏𝑑𝑟

 (8) 

To provide convergence, the dynamic pressure is recalculated in the external cycle, after 

several iterations with the SLAE solution (8). The required norm of flow-rate residual at the 

nodes when the internal iteration cycle is completed  should be established no more than 10% 

of this value after recalculating the dynamic pressure (6) in the step of the external iteration 

cycle. This condition is the only significant difference from the conventional pressure 

method. 

2.2 Identification method of the ventilation system on static pressures and flow 
rates 

The identification problem is solved by an iteration cycle [1]: 

 𝜉𝐾+1 = 𝜉𝐾 + 𝑑𝜉 (9) 

Then the SLAE relating the change in the adjusted local resistance to the resulting 

pressure change in the nodes is as follows: 

 

∑ Δ𝑖𝑗(𝑎)𝑖∈𝑁
𝑑𝑝𝑖

𝑑𝜉𝑚
= ∑ ∇𝑖𝑙 (

∂ℎ𝑙

∂𝑥𝑙
)

−1

(
∂ℎ𝑙

∂𝜉𝑚
)𝑙∈𝑈 ,   𝑗 ∈ 𝑁𝑖𝑛𝑛𝑒𝑟 , 𝑚 ∈ 𝑈𝑖𝑑𝑒𝑛𝑡

𝑑𝑝𝑖

𝑑𝜉𝑚
= 0,   𝑖 ∈ 𝑁𝑏𝑑𝑟

 (10) 

Where 𝑑𝑝𝑖
𝑚/𝑑𝜉𝑚 is the ratio of the static pressure change at the node 𝑑𝑝𝑖 to the 

corresponding change in the identifiable value 𝑑𝜉𝑚, 𝑚 ∈ 𝑈𝑖𝑑𝑒𝑛𝑡  is the set of identifiable 

objects. 

The right side of SLAE (10) can be represented as: 

 (
∂ℎ𝑙

∂𝑞𝑙
)

−1

(
∂ℎ𝑙

∂𝜉𝑚
) 𝑑𝜉𝑚 =

|𝑞𝑙|

2 (
𝜆𝑙𝑙𝑙

𝑑𝑙
+ 𝜉𝑚)

⁄ 𝑑𝜉𝑚. (11) 

It is not difficult to demonstrate that the resulting pressure change for the sum of the 

various impacts is equal to the sum of the pressure changes of these effects. Thus, the new 

values of local resistance are likely to be calculated by solving the SLAE: 

 

‖𝐴𝑀𝐼𝜉𝑀
𝐾+1 − (𝑀𝐼 + 𝐴𝑀𝐼𝜉𝑀

𝐾)‖2 → 𝑚𝑖𝑛

𝐴𝑀𝐼 =
𝑑𝑝𝐼

𝑚

𝑑𝜉𝑚
, 𝑀𝐼 = 𝑃𝐼 − 𝑝𝐼 ,   𝑚 ∈ 𝑈𝑖𝑑𝑒𝑛𝑡 , 𝐼 ∈ 𝑐𝑁

𝐴𝑀𝐼 = ∑ ∇𝑖𝐼
𝑑𝑝𝑖

𝑚

𝑑𝜉𝑚
𝑖∈𝑁 −

∂ℎ𝑚

∂𝜉𝑚
, 𝑀𝐼 = (

∂ℎ𝐼

∂𝑞𝐼
) ⋅ (𝑄𝐼 − 𝑞𝐼 ),   𝑚 ∈ 𝑈𝑖𝑑𝑒𝑛𝑡 , 𝐼 ∈ 𝑐𝐸

 (12) 

Here, 𝜉𝑀
𝐾+1, 𝜉𝑀

𝐾  is the vector of identifiable local resistances of the current and past 

iteration. To solve the SLAE (12), the least squares method is used [20-21]. 
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Metering points that coincide with the boundary network elements are separately taken 

into account; such points are directly given as the corresponding boundary conditions in the 

equations system (4), (5). 

3 Test 

The problem of identification of the off gas system was solved. To achieve that, 65 

pressure and 71 flow rate measurements were made. local resistance coefficients of 550 

sections were evaluated, the problem was reduced to obtaining 14 independent and 3 group 

local resistance coefficients [1]. 

 

Fig. 2. Comparison of the experiment with the calculation, electrolyzer 33-29, 56-60. 

a) before identification 

b) after identification 

1– Flow rate calculated by the network model; 2 - flow measurement; 3 - static pressure calculated by 

the network model; 4 - pressure measurements 

The calculation results before and after identification has been shown in Fig.2. The 

identification reduced the l2 norm of the difference between experimental and calculated 

pressure values by a factor of 2.5. After identifying, the pressure and flow rates values 

according to the calculation, register perfectly with the experimental data.  

 

E3S Web of Conferences 102, 01003 (2019) https://doi.org/10.1051/e3sconf/201910201003
Mathematical Models and Methods of the Analysis and Optimal Synthesis of the Developing Pipeline and Hydraulic 
Systems 2019

5



4 Conclusion 

The modification for the static pressure of the nodal pressure method has been proposed, 

so has the identification method for local resistances of network elements by static pressures 

and flow rates at test points. According to the experiment the given method was used to adapt 

the system of gas ducts for the electrolysis production. 

 
This work was carried out under state contract with IT SB RAS (АААА-А17-117030910025-7). 
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