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Abstract. The article describes a special case of the synthesis of the 
electromechanical system for controlling the thermal regime by the method 
of analytical design of aggregated regulators.  The task was to base the 
synthesis of the optimal in speed electromechanical system for stabilizing 
the operating modes of the thermodynamic system, based on the use of the 
Peltier module as a thermal converter.  

1 Statement of the research problem 
At the end of the 20th century, a new approach to the synthesis of control systems emerged, 
which from its author A. Kolesnikov.  called the method of Analytical Design of 
Aggregated Regulators (AKAR) [1-10]. The basis of this approach is the concept of 
synthesis of nonlinear feedbacks ensuring the asymptotic stability of the control system 
with respect to the required (from a practical point of view) motion (attractor) in the state 
space of the system [1].  The difference of this method from the methods of synthesis of 
optimal control systems is what is missing here as a criterion for optimizing the control 
system  [11]. From the point of view of the implementation of the synthesis procedure, the 
AKAR method has an undoubted advantage over the synthesis methods of optimal systems, 
expressed in the absence of restrictions on the nonlinearity of the initial system of 
differential equations. 

From a practical point of view, the synthesis of control processes occurring in the 
control systems of thermal modes of microprocessor systems, is of great interest. The very 
method of AKAR allows to get control extreme in terms of energy costs [1-2]. Thus, the 
synthesis of control based on the disclosure of a synergistic concept will improve the 
energy efficiency of the thermodynamic system considered in the work. 
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2 Synthesis of a mathematical model 
The basis of the electromechanical control system under consideration is the 7015-C 
electric motor, which provides for the conversion of electrical energy into mechanical 
energy of motion of the system actuators. The mathematical model of a DC motor with 
collector control is described by the following system of equations [12]: 
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where U - the voltage applied to the engine manifold; 
i -  the current consumed by the motor; 
R, L – motor electrical parameters;  
J – the parameter characterizing the inertial properties of the motor armature is the reduced 
inertia moment of all rotating masses; 
ω – engine armature speed;  
Mc= μω2- external applied moment of resistance, μ = 1,1·10-7;  
cm, ce – mechanical and electric permanent motor;  

Based on the passport data of the electric motor, we will perform calculations of 
unknown quantities in the system of equations (1). 

Knowing the supply voltage of the engine and the speed of rotation of the engine, we 
find the mechanical and electrical components of the engine: 
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The mechanical component cm of the engine in the calculations is chosen approximately 
equal to the electric component. Considering that the electromagnetic moment of the engine 
must be greater than the moment of resistance, we take the value of the mechanical 
component equal to 0.078. 

The anchor circuit resistance and inductance were obtained experimentally and are 
equal, respectively, 79.6 ohms and 0.0048H. 

As it is known from sources, the dynamics of thermal processes is of a pronounced 
aperiodic nature, in connection with this, the thermodynamic parameters of the model under 
consideration are described by the following differential equation: 
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where θ – current temperature; 
N1 – source power (the quantity that shows how much heat the hot side of the Peltier 
element receives during operation), is constant; 
N2 – power flow (the value showing how much heat the fan removes from the Peltier 
element per unit time), is some function of angular speed: N2 = f(ω); 
T – Peltier time constant. Empirically derived - 2,85 с. 

The coefficient characterizing the quantitative conversion of electric energy E0, was 
obtained experimentally and is equal to 0.188. 
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Knowing the useful power of the Peltier element and the coefficient E0, we find the 
value  
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Assuming that the power of the drain depends on the speed of rotation of the fan and the 
heat outflow will be aperiodically associated with the power of the source, suppose 
  1 (1 )f N e   . Then 12 (1 )eN N  . Based on this, we rewrite the differential 

equation (3) as follows: 
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For ease of modeling, we denote the variables 1x  , 2x  , 3i x , and as constant we 
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The system of equations (6) is the desired mathematical model of the system. 

3 Control synthesis based on the AKAR method  
For the synthesis of the control system by the AKAR method, it is possible not to make a 
transition to the abstract phase case of the state space, but it is convenient to use the original 
system (1), but it is necessary to convert it to the following form: 
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The variable characterizing the temperature of the heating side of the Peltier element 
(x1) is the output coordinate of the system; therefore, to form requirements for the desired 
system behavior in the state space, we introduce the following macro variable of the order  
ψ1= x1 – –x01 → 0, where x01 - preset, required coordinate value x1. The value of the rate of 
temperature change should ensure the temperature of the heating side of the Peltier element 
to the value specified above, for this we introduce another macro variable  
ψ2 = x2 – φ1(x1) → 0, where φ1(x1) some function describing aspiration 
x2 → φ1(x1) in steady state. 

Next, enter the macro variable order by coordinate 
ψ3= x3 – φ2(x1, x2) → 0, where φ2(x1, x2) some function that describes the relationship 
between the coordinates in the stationary state of the system and, therefore, 
 x3→ φ2(x1, x2). 

For newly introduced macro variables ψ1, ψ2, ψ3, we require the asymptotically stable 
law of change, that is, the implementation of the following system of differential equations: 
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where T1, T2, T3 – time constants determine the rate of aspiration of the introduced macro 
variables to zero, or, in other words, the speed of an arbitrary trajectory of the system in the 
state space to the attractor required from a technological point of view. The system of 
equations introduced in expression (13) expanded the state space of the system from the 3rd 
to the 6th, which is one of the main provisions of the AKAR method, further synthesis of 
the control system is reduced to a step-by-step process of decomposition (compression) of 
this space to the initial level. 

As a result of the decomposition of the state space of the control system, we define the 
value of the control in the coordinates of the controlled process; the method's operation is 
considered in more detail in our papers [4]: 

2 1 2
3 3 32 2 3 33 3 3 3 2 1 2
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dt
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Expression (9) determines the asymptotically stable control action on the control system 
described by equations (7). 

After all the above manipulations, the system (8) will take the following form: 
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However, the most interesting is the dynamics of the control system synthesized by us. 
As a rule, to evaluate the resulting system from the point of view of dynamic properties, 
Matlab models are used in the environment [14-19]. We will also use this modeling 
environment and explore the synthesized system. When modeling system (10), the results 
presented in Figure 1 were obtained: 

 
Fig.1. Transitional coordinate x1 and control schedule. 

From figure 1 it can be seen that the time of the transition process along the x1 
coordinate with the values of the parameters T1 = 2.88, T2 = 0.01, T3 = 0.0099 is about 5 
seconds. This is one of the best in terms of energy efficiency of many simulation results, 
unfortunately the volume of the article does not allow to bring everything. 

 

 

Conclusion 
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Thus, the results presented in this paper allow us to speak about the possibility of applying 
the synergistic concept of synthesis in the development and creation of energy-efficient 
thermodynamic systems.  
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