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Using characteristics of the residuals as an
assessment of the effectiveness of processing
the results of measurements
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Abstract. The article considers an analytical assessment of the use of
characteristics of residuals for evaluating the efficiency of processing
measurement results. The proved is provided that the method of
reproduction of estimates is highly effective in processing the
measurement results.

1 Introduction

At present, in practical implementation of the processing of measurement results, in many
cases, analysis of residuals is used as a criterion for extracting a useful signal [1-4]. This is
due to the fact that any model, however accurate it may be, assumes the presence of
residuals - deviations of the theoretical values of a series from empirical data. In the
absence of a useful component model, the standard deviation criterion is usually used. The
application of this criterion is widely used in practice. In this regard, we will prove
analytically using the example that using the method of reproduction of estimates of the
useful component [5-12] allows the dispersion of residuals to be approximated to the value
of the dispersion of the additive noise component. It should be noted that in terms of
efficiency, this criterion is inferior to the criterion for minimizing the root-mean-square
error, using the useful component model, since it requires a priori information about the
dispersion of the additive noise component and there is no pronounced minimum error.

2 Research

In this paper, we will consider the case of calculating the variance of the estimate of the
constant signal by the method of multiplying the estimates with a random division of the
implementation of the original process into two parts [5-6]. Define arbitrary positive
integers 7, [, m such that

m<n—-2[+1, (D
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and consider a set of 7 pairwise uncorrelated random variables Xi,...,X, with equal
mathematical expectations and equal variances: Mx; =a, Dx; =D, 1<k <n. The value
awill be considered unknown, and the random vector (xl,--.,xn) - the sum of the
constant signal @ and noise at the moments of time # <...<?,. As a result we get the

implementation of a random process (xk )Z=1. Estimate the value @ using the method of

reproduction estimates. We randomly divide 7 times the set {1,...,71} into two parts U ,
V;, so that for all the following conditions are met:

1)|Uj| =21, |V/| >1 (hereinafter |A| is the number of elements of the set 4 );

2) maxU; <minV

U, #U;, i=1,...,j—1 (with j=1);

4) the probability of choosing a pair U;, ¥; is considered equal for all pairs sets that

satisfy conditions 1-3.
From inequality (1) it follows that the described 7 -parts partition of the set {1,---,71} is

always possible. Estimation @ of the signal a in the k-th section (1<k < n) at the
multiplication of estimates j (1< j<m), is the average value of the estimates of this
signal found by the least squares method (LSM) in the part (xi ),'ET_,, of the original

implementation, where through 7; the one of the sets U;, V; the number belongs to is
denoted. In our case, the LSM are used - estimates of zero degree polynomials:

ay :|TLZ)@' , then a; :%iakf . )

J|ieT; Jj=1

Obviously, 9 ,and therefore @; are unbiased estimates of @ . The result of a m -times
division of the set {l,...,n} into partsU;, V;, that satisfy conditions 1-4, can be
represented as a random chosen subset 4 with m elements of the set {/,...,n—I}, each

element 7 of which symbolizes a certain pair of sets U; ={L....p} , V, ={p+1....n}

Because of condition 4, the random choice A4 has a uniform distribution law.
Consequently, the probability P of its results is the inverse of the number of ways in which

such a choice can be made £ =—-

. RN .
. The average variance D, = _ZDak is used as
n-21+1 Ly

the measure of the quality of the assessment multiplication method. It is necessary to
calculate Dy, and prove that with constant”, [ and increasing 7 quality of processing

improves, i.e. D, decreases. Note that inequality 7 > 2/ follows from (1).
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3 Solution

The trivial case n =2/ was considered in [6]; therefore, we consider only the main case

q
n>2/+1. The sum z at P > ¢ is considered equal to zero. Fix arbitrary 1<k <n.

Jj=r
Now
1 & 1 & min(i,k)-1 1 n—l 1
YR I W
moa mea = T jemax(i)
ed oA : 3)
m min(i,k,n—1)-1 n—l
-- > .
==/ X% -+ -
meo = ") jemax(ikd)
n—l T .
. . n—j
where 7; = |A N { J }| . The first sum in brackets can be converted to z .
Jj=n+1-min(i k,n—I) J
1 n n—I . n—l T.
n-j J
Consequently, a; =—zx,» Vi, Where Vi = —+t z - .
m Jj=max(n—i,n—k,l)+1 J Jj=max(i,k,l) J

Then

m n

2
D, =M [#Zx,»yk,-] (M, ) =m {# > x,»xpykiykp}—az. @)

i=1 i,p=l1

Given the independence of random variables X;X, and ViV and pairwise

uncorrelated random variables X;,...,X,, we obtain
n
_ 2 _
D, =— ZM(xixp)M<ykiykp)—a =
m i,p=l1

" Lp=l i,p=l1
i#p
:# i(D—i_az)]w(y’?")—irazij\/l(ykiykp) ~a’ = %)
i=1 by
i#p

:% DZn:M(J’l%i)"‘az Zn: M(ykiykp) ~a’ =
i=1

i,p=1
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B3t | S |- -

i,p=1

LS uli Sl S |- B i),

i,p=l1

because —Z Vi is the sum of random coefficients of a linear
m

function a;, = a;, (xl,...,xn) , which is always equal to 1. Find the expected value of random

variables 7;>7; (lSi,an—l) with i=j 7,7; =T[2 =1,

21V 'mW(n-=2]+1- |
w()= G o (no2mln 2! ©)
Mo (m=D)(n=21=m+1){(n—20+1)! Cn-20+1
If i # j, then
Cn n=2l-1)!m\(n-2l+1-m m(m—1
M (7, ) =220 = ( Jum( b (m=1) 7

Clor (m 2) (n 20— m+1) (n 21+1) (n—21+1)(n—21)

This expression is also true when m =1, because then 7;,7; =0 with probability 1. For

all 7;,7; =0 we have

n—I| n—I n—I n—I|
T, _ T T _ T
M(y;f,-)=M n.J + _] ) Z Vl.j n.J
_j=max n—i,n— kl) J j=max([,k,l) J j=max(n—i,n—k,l)+l J _j=max([,k,l) J
n—/ n—I n—I| n—I|
T,_iT,_ T.T T,_:T
S e § R, § S
Jj.p=max(n—i,n—k,l)+1 Jp J.p=max(i,k,l) Jp Jj=max(n—i,n—k,l)+1 p=max(i,k,l) Jp
n—I M(T T ) n—I M(T T ) n—I n—I M(Tn ~j p)

_ n—j n—p J°p
B 25 Jp +-_§: Jp "2 25 ZS

Jj.p=max(n—in—k,l)+1 Jj=max(n—i,n—k,l)+1 p=max (i,k,l)

n—I|
m

B m(m—l)
Cn=20+1

1 S|
—+ — |+ X
j=max(n—[,n—k,l)+1 j2 j=m§(;,k,l) j2 (n_21+1)(n_2l)

n—[ n—[

n—I 1

n—l 1
S T T v
Jj,p=max(n—i,n—k,l)+1 Jp Jj.p=max(ik,l) Jp Jj=max(n—i,n—k,l)+1 p=max(i,k,l) Jp
J#p J#p
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“(n—20+1)(n-21) (n—20+1)(n-21) "

m(n—21—m+1) [ ol ! J (m—l)

Jj=max(n—i,n— kl)+1j j= max(zkl
n—I 1 n—I| 1 n—I n—I 1

NI SR VI
j,p=max(n—i,n—k,l)+l Jp j,p:max(i,k,l) JpP j=max(n—i,n—k,l)+1 p=max(i,k,l) JpP

Sum up by i,k from 1to 7 each of the five sums in brackets.

n n—I 1 n—I| 1 n

5. L5l s

i,k=1 j,p:max(n i,n—k l)+l JP J,p=l+1 ]pi,k:max(n—j,n—p)ﬂ

n—l : . 2 n—l : . n—l : P n—I n—l .
_ Z (mln(.j,p)) _ Z mln(]jp) =z mm(].,]‘)Jr z £+ z J_
o=l JP =i+l max (/, p) =141 max (/, /) Joptnd e P

J>p J<p
n—l n—I
=Y 12y £:n 21+2Z Zp—n 21+z J” JjoI- G+DG=1-1)
JoIHL jpelsl Farrel ! j=l+2
i>p
n—l n—I _ _
=n=20+ Y (j-1)-1(1+1) D] lzn—zz+w—l(1+1)ol+2 =
J=l+2 j:l+2] 2

n—I|
1 .
(hereafter the designation o; = Z—_ is used; note that when j>n—[ 0;=0)

—1
i=j

B n?+n-20-n—4l

: —1(141)0,s
i n-I L _ n-l Llnin(j’p)l _ 1l (mln(j, p)) _
ik=1 j,p:max(i,k,l) ]p J>p=l ]p i,k=1 7=l ]p

_ % (min(j.p))" (min(L0))" I

. P .
Jop=l+l JP [ somlr Sl
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2 —_— . —
:’””—21"41—1(”1)%2 +1+2l0,,,;

2
n n—k n—I| n—I| n—l p
> 5 L5 L5530
k=1 j=max(n—i,n- kl)+1jh max(i,k.1) P j:l+1‘]p:1 Ly ——
= — = — 1+ ——no =
j=l+ 1/ p=max(l,n+1-j) p j:1+1]p:n+l—j j:l+1p:n+l—jp
n—/ 1 n—I 1
(Hereafter o = Z—, Z —)
j=iv1d pepii—; P
n—l . n—I n—I n—I
S L > 1-no=2"1-20,, —no =2n-41-2c,, - no .
j=l+1 J p:l+1pj:n+l—p J=l+1
Thereby,
1< D < X D
D - D = M ] = . _21_ l .
¢ n; “ nmzi; (ykl) nm(n—20+1)(n-21) [(n m+1)
2
(=204 n—20+1) 4 (m—1)| 2| 2= Ve, 41420, +
> 1+2 1+1
+2(2n-41-2lo,,, —no))|= D n=20)2n—-4l+1)+(m—-1)-
I

nm(n—21+1)(n-2I)
(~2n+4=1407 +n-20-n—4l+4n-81-21(I+1)0y,, - 2oy, —2n0+1)]:

D

nm(n—21+1)(n-2I) [(

n=20)(2n—41+1)+(m=1)(n* =2 -n+3n-81 2 (I +1) 0y, -

D

_21(%2 +l%]—2naﬂ = [(n—21)(2n—41+1)+(m—1)x

nm(n—21+1)(n-2I)

x(nz —21~n+3n—8l—%—2[(l+2)07+2 —ZnGﬂ ,
+

Let us prove that with an increase in the number of reproduction estimates 7, the mean
variance decreases. The resulting ratio is

D, =" (p+(m=1)7), ®)
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where @, B and 7 do not depend onm . Now it is required to prove inequality

%(,B+(m—l)y)> mojrl(ﬂ+m7/)<:>(m+1)(ﬁ+(m—l)y)>m(,B+m;/)<:>ﬂ>y,

i.e. inequality

(n-21)(2n-41+1) > n’ —21.n+3n—81—12—11—21(1+2)a,+2 ~2no <
+

<:>2n2—4Z~n+n—4l~n+812—2]—n2+2]~n—3n+8]+12—ll+21(1+2)0'1+2+2n0'>
+

>0<:>n2—6l~n+812—2n+6l+%+2](1+2)o-1+2+2n0'>0. )
+

For each />1, we prove the increase of the sequence (¢” )::2”1, where @, is the left

side of inequality (2), reduced by 2no . With any n > 2/+1 we get
n+l-1

By =By = (n+1)° —61(n+1)+8/ —2(n+1)+6l+l2—11+21(l+2) > -

+ jet2/
n+l
20(1+2
—n2+6l-n—812+2n—6l—2—l—21(l+2) > L oet-gr-2s U2
[+1 farry) n+l1-1

(2n—61-1)(n+1-1)+2> +41  2n* —81-n+81> +n—1-1 _
n+l1-1 n+1-1/

2(n-20) +n-1-1_0+20+1-1-1
= > >0-
n+l1-/ n+1-1

Thus, the required thesis is proved. Now we find
2] [+1
oy = (21 +1)7 —61(20+1)+8/ =2(20+1) 46+ 21(1+2) > =

+ j=ti2d
=412+4l+1—1212—6l+812—4l—2+6l+1=ﬂ20,
[+1 [+1

From all this it follows that @, =20 for all n>2/+1. Note also that with the same

n—I[ n—I[
1 1 1
values n O = E - E —> 5> 0. Therefore ¢, +2n0 >0, ie. inequality (9)
Jj=l+1 J p=n+l—j p (” -1

holds for all n>2/+1. Thus, with increasing 7 value D, decreases.
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In practice, in many cases, the residual analysis serves as a criterion for the quality of
models, which allows to determine whether a series of residuals is Gaussian noise or if
there are any interdependencies in its structure.

Conclusion

1. It is analytically proved that when using the method of reproduction of estimates for
extracting a signal under conditions of a priori uncertainty, the value D, decreases

with m increasing.

2. The obtained ratios make it possible to use comparative analysis of residual
characteristics (correlation function, differential distribution density, etc.) as quality criteria
for processing measurement results.
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