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Abstract. This paper proposes a new method for calculating arch support 
with grouted space behind the support. The analysis of existing 
installations and methods for the calculation of frame supports was made. 
It has been established that the existing methods of frame parts calculation 
do not take into account the presence of grouted space behind the support. 
It is proposed to take into account the presence of the grouted layer in the 
space behind the support when it interacts with the rock mass. The 
formation of partially disturbed rock adjacent to the grouted layer is taken 
into account in the behaviour of rocks. In this method, the arch support is 
replaced with a ring support. The finite element method establishes the 
reduced dimensions of the ring support and its module of linear 
deformations, corresponding to these values of the arch support when its 
bearing capacity is lost. The scheme for calculating arch support ultimately 
boils down to considering the interaction of the support, the grouted layer, 
the zone of partially destroyed rocks and the rest of the mass of intact rocks 
in the hydrostatic field of rock pressure. 

1 Introduction 

The task of calculating the support for development and capital workings is one of the main 
tasks of rock mechanics. To solve this task, experimental and theoretical approaches were 
used.  

The results of experimental studies are presented in numerous works, summarized in 
monographs [1, 2], in guidelines for performing design work, and also in textbooks. 
Performing a complete review of these studies is a great independent task. The obtained 
calculation formulas for the support load, the support displacement and its bearing capacity 
are applicable only in those mining and geological conditions in which experimental 
measurements were carried out. The desire to take into account all possible factors affecting 
the state of the support results in appearance of up to ten empirical coefficients. A fairly 
approximate definition of empirical coefficients significantly reduces the accuracy of the 
design formulas. So, the less empirical coefficients are used, the more accurate the formulas 
are, but in a narrower area of their application 

The theoretical approach allows us to obtain more general laws of the geomechanical 
state of the support and rock mass and to clarify empirical formulas. One of the directions 
of theoretical calculations of support is based on knowledge of the anticipated loads on the 
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support and further use of computational methods of material resistamce and structural 
mechanics. However, the values of the loads on the support can be found only after solving 
the problem of the interaction of support with the rock strata. Such an approach has been 
implemented in a number of works in which different types of supports were studied.   

A theoretical assessment of the effect of the grouted behind-the-support space on the 
stress-strain state of the rock strata was made in the study [3-9]. However, the pressure on 
the support was preliminary set as the working resistance of the support, which is a separate 
task. 

2 Materials and technique 

In this paper, we consider the formulation of the problem of calculating the stress-strain 
state of the system ‘frame support – grouted layer – rock mass’. 

The general calculation scheme is presented in Fig. 1. 

 

Fig. 1. Calculation scheme: 1 – support; 2 – grouted layer; 3 – partly broken ground; 4  – host rock. 

The strain-stress state of the region of computation is considered when the support 
crown interacts with the grouted layer and the rock strata. The calculation is carried out for 
a circular roadway with a radius R equal to the radius of the roof crown. If the sectional 

area of the roadway S is known, then the reduced radius  /SR  is considered. The 
calculation area consists of four blocks. 

Block 1 is a support with deformation and strength characteristics: Еk  – Young 

modulus; k  is the coefficient of transverse deformations; k  - tensile strength of the lining 
material (steel). 

Block 2 is a layer of cementing stone with deformation and strength characteristics: Еt – 

Young modulus; t – Poisson ratio; t – compressive strength of cement stone. 
Block 3 is a zone of partially destroyed rock (over-limit deformation), in which 

circumferential and radial stresses are proportional. 
Block 4 is a zone of host rock that is in an elastic state with deformation and strength 

characteristics: Е – Young modulus of rock;  – Poisson ratio; s – tensile strength. 
The boundaries of the zones maintain continuity, therefore, at the crossing of the 

boundaries of the zones, the radial displacements and stresses should be continuous. 
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The equilibrium equation in stresses for an axisymmetric problem has the following 
view [10]: 
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d rr ,                                                  (1) 

where, r – the distance from the centre of the roadway;  

r ,  – radial and circumferential stress. 
This equation is applied to each block of the calculation area. 
The internal and external pressure levels p1, p2 are assigned to the block, and the 

boundary conditions have the following view   
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Here, R1, R2  – internal and external radii of the ring zone. 
The common solution to this equation for the elastic (lineary elastic) behaviour of the 

support material and rock strata has the following view [10]: 
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where,  r – the distance from the centre of the roadway. 
At the internal border of the area from the roadway side there is no presuure on the 

support: 0)(  Rr . 

At the remote distance from the roadway, the distribution of stresses in the rock strata is 
taken  as hydrostatic: pr   )()( . In particular, Hp  , where  is the specific 

weight of the rock, Н is the depth of roadway. 
Let us consider a ring support with an inner radius R  and outer radius R1. The height of 

the support is khRR 1 . The inner surface of the support is not loaded, the outer surface 

is under pressure from the grouting q. Therefore, the boundary conditions have the 
following view: 








.)(

;0)(

1 qR

R

r

r                                                           (4) 

In accordance with the general solution (3) and with consideration of the boundary 
conditions (4), the obtained stress distribution in the support is as follows: 
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Stresses on the inside of the support at  r = R are found from the expressions (5). 
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The circumferential deformation of the support for the axisymmetric state in accordance 
with [10] has the following view:  
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where, Еk – module of linear deformations; k – Poisson’s ratio of the support material. 

Substituting expression (6) into (7), taking into account the fact that k  = 0,2  0,3 and  

k
2 = 0,04  0,09 are small, we get: 
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Vertical displacement (deflection) of the crown is calculated as  
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To calculate these displacements, it is necessary to know the reduced height of the 
support  hk  and the generalized module of linear deformations of the support material Еk.   

 

Fig. 2. Support section profile conversion to the equivalent cross-section. 

To determine the equivalent cross-section of the support, we replace support section 
profile SVP with a rectangular with height hk  and width b (Fig. 2).  

The values of these dimensions are found from the equations of the areas S of the profile 
and the rectangle and the equation of their inertia moments I with respect to the average 
section in height. We get the following system of equations: 

4

E3S Web of Conferences 105, 01026 (2019) https://doi.org/10.1051/e3sconf/201910501026
IVth International Innovative Mining Symposium














.
12

;
3

I
hb

Shb

k

k
 

The solution of this system looks as follows: 
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The  values of the equivalent dimensions of the lining section obtained by formulas (9) 
are given in the table below. 

Table 1. Equivalent  dimensions of support cross-section for various SVP profiles [4]. 

Profile 
number 

Cross-section area 
S*, cm2 

Moment of inertia 
I*, cm4 

Equivalent height 
hk, cm 

Equivalent 
width b, 

cm 
SVP-17 21.73 243.4 11.59 1.87 
SVP-19 24.44 322.8 12.59 2.22 
SVP-22 27.91 428.6 13.57 2.06 
SVP-27 34.37 646.1 15.02 2.29 
SVP-33 42.53 999.5 16.79 2.53 

* Values of areas and moments of inertia for SVP profiles have been taken from  
[“Profiles for mine roadway support” (pit props)”. 

The generalized module of linear deformations of the support makes it possible, for 
calculation purposes, to substitute the structure consisting of the crown, posts and locks 
with one element - a continuous homogeneous lining with the reduced dimensions and the 
similar yielding.  

To determine the generalized module of linear deformations of the support, the results 
of bench tests of supports. 

The value of the generalized module of linear deformations was determined from the 
condition of equality of the calculated and full-scale values of the crown deflections with 
the loss of the frame of its carrying capacity. 

 

Fig. 3. The bench test scheme in the passive mode. 
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The support was calculated as a structure in a two-dimensional stress state. This 
solution is due to the fact that the horizontal size of the reduced cross-section is an order of 
magnitude smaller than the vertical size. The design scheme (see Fig. 3) corresponded to 
the bench test scheme.  

The calculation of the stress-strain state of the support was carried out according to the 
finite element method using the licensed program ELCUT.  

The strength of the support was assessed using the Mohr strength criterion: 

t
s

t 



 21 ,                                               (10) 

Where, 1, 2 – principal least and maximum strain; t, s – strength limits for tensile 

and compression strength of the support material, t = 4∙108 N/m2, and t/s = 0,1. 
Figure 4 shows the results of calculations of the support displacement and the values of 

the Mohr criterion in the failure limit state. 

 

Fig. 4. Displacement of support and distribution of the values of the Mohr criterion in the failure limit 
state.  

The calculated values of the generalized module of linear deformations of the support 
that satisfy the bench values of the bearing capacity and yielding of the support amount to 
2109 N/m2 and 4109 N/m2, respectively. The Poisson ratio was set the same as for hot-
rolled steel profile [16] and amounted to 0.25. 

3 Conclusions 

1. For an adequate mathematical modeling of the “support - grouting layer - rock mass” 
system interaction, an axial-symmetric formulation of the problem of support calculation 
was proposed. 
2. The three-piece arch support can be replaced by a ring support with reduced cross 
dimensions and a generalized module of linear deformations. 
3. The values of the module of linear deformations of the ring support, that corresponds in 
its bearing capacity to the three-piece arch support with profiles SVP-22, SVP-27, are 
within (24)109 N/m2. 
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