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Abstract.The existing mathematical models that predict the poly-fractional 
granular media packing density do not take into account their packing degree, 
which gives a fairly large deviation of the simulation results from the actual ex-
perimental values (up to 20-25%). To increase the reliability of prediction of 
the elastic modulus of crushed rocks, it is necessary to develop the mathemati-
cal model that would give more adequate values, since it is known that a 
change in the granular medium packing density by only 5-10% can lead to a 
change in the elastic modulus up to 1.5-2 times. The conditions under which 
smaller particles can be placed in the free space formed after packing larger 
particles are determined in this work on the basis of the performed computer 
simulation. It is established that particles of the i-th component of crushed rock 
can be placed in the free space formed after packing all the previous (larger) 
components, if the free space volume exceeds the ratio of the actual volume of 
the particles of the considered component to the packing density of one-
dimensional particles to a degree that is exponential function of the serial num-
ber of the component. 

1 Introduction 

The performance of open-cut vehicles is significantly impacted, among other factors, by the 
quality of roads [1, 2]. And, despite the fact that recently more and more research are carried out 
on asphalt and cement concrete road topping, as well as on increasing their bearing capacity 
using geosynthetic materials [3-5], yet their largest share is still occupied by nonmetallic struc-
tures [6, 7]. 

In addition to standard construction materials, crushed overburden and carbon-dispersed 
crushed rocks can be used to construct pavement layers of temporary open-cut roads. To predict 
the packing degree, as well as deformation and strength characteristics, it is necessary to know 
their bulk density, which in turn depends on their particle size distribution and the compaction 
effect values. 

Today, apart from mathematical models devoted to the packing of one-dimensional particles 
[8-11 and others], there are mathematical models that predict the bulk mass (density) of aniso-
metric materials using phenomenological and fine-structural approaches. However, the main 
disadvantage of all these models is that they do not take into account the packing degree of the 
granular material, and therefore it is necessary to develop the mathematical model that allows 
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determining the packing density of crushed rock particles not only taking into account their par-
ticle size distribution, but also the compaction effect values. 

2 Materials and methods 

When considering the granular material packing, assumptions are always made. All previously 
developed mathematical models for the packing of both single-dimensional and multi-
dimensional particles imply that they have the form of a cube, a tetrahedron, an octahedron, a 
sphere, and others. In reality, the particle shape of the granular material is so diverse and not 
repeatable that the probability of any regular shaping is very small, regardless of its type. In this 
regard, it was assumed that the shape of all particles is spherical. In addition, it is also assumed 
that all the largest particles that make up the granular material are evenly distributed throughout 
its volume, that is, the segregation phenomenon is not taken into account. When modeling the 
packing density this allows considering not the entire set of particles, but only one largest parti-
cle and a part of the space adjacent to it. 

To develop the mathematical model capable to predict the crushed rock volume mass (densi-
ty), it is necessary to know the greatest packing density of anisometric particles. To solve the 
problem, we assume that the crushed rock consists of N components (a specific fraction of 
crushed rock is taken for each component), each of which is characterized by an average Di par-
ticle diameter, and the largest component (#1) has an average Dmax particle size. The average 
particle size of each component is determined from the dependency (making another assumption 
that the average particle size of each subsequent component is 2 times smaller than that of the 
previous one): 

1max 2  i

iD

D ,                                                                (1) 

where i  – the component number. 
Assuming that the largest particles are evenly distributed throughout the volume, we will 

consider only one such particle with an adjacent part of the space, which is a limited discrete 
structure, the set of which makes up the crushed rock macrostructure. For this, two three-
dimensional arrays including the number of points (nodes) sufficient for discretization of the 
smallest particles that make up the crushed rock, with the value of each point equal to zero, are 
created in the virtual memory of computer: 

,0),,(1 ZYXMassive 0),,(2 ZYXMassive ,                                    (2) 

where ZYX ,,  – the number of points in the array along the axes zyx ,, respectively. 
Then, the largest component is inscribed into the central part of the first array area by acti-

vating zeroed points (giving them a unit value): 
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max,...,1minmin, yyyY  ;                                                (6) 
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1),,(1 ZYXMassive ,                                                   (10) 

where Kxyz  – multiplicative factor equal to: 

KzKyKxKxyz  ,                                                         (11) 

Kx , Ky , Kz  – coefficients taking into account the distances between particles along axes x, y, z 
respectively; those being equal to one when the distance between the centers of the two balls is 
equal to Dmax. 

Assuming that the volume of a single discrete structure is equal to one, and the distances be-
tween centers of two balls along the x, y, z axes are equal to each other, the volume occupied by 
the largest particle is equal to: 

36 Kxyz
СV up





,                                                       (12) 

where upC  – the packing density of the largest particles, numerically equal to the volume occu-

pied by the largest particle in a single discrete structure of the material. 
The results of previously performed practical experiments showed that the packing density 

of one-dimensional particles of crushed rock, depending on the compaction effect values, ranges 
from 0.587 to 0.623. In this regard, we assume that the packing density of the largest particles is 
0.6. Then we have: 
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The largest component having been inscribed in the first array; the location of the compo-
nent #2 center is randomly selected: 
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The location of the center of the second component having been selected; all possible points 
of the array along the x, y, z axes are calculated, which will be occupied when inscribing this 
component, and the zero points of the second array are activated: 
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max2,...,1min2min,22 xxxx  ;                                         (15) 
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If at least one of the activated points of the second array coincides with the activated points 
of the first array, all points of the second array are reset, and the new location of the center of the 
second component is selected. Otherwise, all coordinates of the activated points of the second 
array are transferred to the first array, and they are assigned the value of one, and the points of 
the second array are reset. 

The algorithm allows inscribing component # 2 several times, which allows inscribing the 
available free space of a single discrete structure as much as possible. After this, the procedure is 
repeated for component #3 and so on for each subsequent component. 

After packing each element, the proportion of the total number of points of the first array that 
have a non-zero value is calculated: 

"0),,(1""1),,(1"

"1),,(1"
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Ai .                              (24) 

Since this method considers a model that does not imply the obligatory contact of randomly 
arranged heavy spherical particles, that is, spherical particles that are randomly located not over-
lapping and not in contact with each other, multiple modeling is carried out to obtain the results 
adequate to the gravitational field. In this case, the final result is the case that provides the high-
est packing density of particles, since according to the research results [12-14], the packing den-
sity of spherical particles in a gravitational field exceeds the packing density of the same parti-
cles without taking it into account. 

In previously performed studies, the hypothesis was assumed that a max2 5.0 DD  size ball 

can be inscribed in the free space formed after packing larger balls, if its packing volume meets 
the condition: 

sv
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where 2V  – the volume of the second component inscribed into the free space formed after 

packing the first component; 
svV1  – the volume of free space formed after packing the first component. 

This hypothesis is proved only for the case of a two-component system, that is, when 
2max i . Consequently, its development is required for a multicomponent system. In this re-
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gard, we accept the refined hypothesis, which consists in the fact that balls of smaller size can be 
inscribed in the free space formed after packing all larger balls, if their packing volume meets 
the condition: 

sv
in

up

iup
i V

C

V
V

i
1 ,                                                           (26) 

where in  – exponent depending on the serial number of the i component; 
sv

iV 1  – the volume of free space formed after packing all the components with sequence numbers 

1...,,2,1  ii . 

From the expression (26) it follows that the limiting (maximum) volume of the i-th compo-
nent, which can be placed in the free space formed after the packing all the larger components, is 
achieved when the in  exponent is: 
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3 Results 

In the course of multiple modeling, the exponent was determined corresponding to the highest 
packing density of anisometric particles for a given packing density of one-dimensional particles 
of 60.0upC  (table). 

Table 1. The values of the exponent according to the results of computer simulation 

Component 
number, i 

The ratio of the average particle 
diameter of the largest (first) 

component to the average parti-
cle diameter of the i-th compo-

nent, Dmax/Di 

The proportion of the volume of 
a single discrete structure occu-
pied by particles of components 

with sequence numbers (i, i-1, …, 
1), Ai 

Exponent, ni 

1 1 0.6000  
2 2 0.6750 3.28 
3 4 0.7188 3.92 
4 8 0.7537 4.08 
5 16 0.7828 4.18 
6 32 0.8076 4.25 
7 64 0.8299 4.22 
8 128 0.8516 4.03 
9 256 0.8714 3.94 
10 512 0.8900 3.78 
11 1024 0.9062 3.75 
12 2048 0.9198 3.78 
13 4096 0.9325 3.61 
14 8192 0.9424 3.76 

The dependence of the exponent on the component number can be represented as a function 
(Figure): 
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   75.36125.0exp5.0 2  ini .                                            (30) 

 

Fig. 1. Dependence of the exponent on the component number 

Statistics data show that regression function (30) is adequate in relation to the results of 
computer simulation. If the component number 2i  is taken into consideration, the correlation 
ratio is 0.84, the Fisher's variance ratio is 0.325; a critical value being 4.26 (significance level is 
0.95). If the second component is not taken into account, the correlation ratio will be 0.977, and 
the Fisher's variance ratio is 0.02, which is certainly more adequate compared to the first option. 
Based on this, taking into account dependence (30), condition (26) may be written as: 
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Obtaining a relationship characterizing the limiting volume of crushed rock particles of a 
certain size, which can be placed in the free space formed after packing all the larger particles, is 
a prerequisite for developing a mathematical model of particle packing. 

4 Conclusions 

1. If all the particles that make up the crushed rock are divided into components (fractions) with 
an average particle size within each component equal to half of the average particle size of the 
previous component, then the component number is equal to the logarithm to base 2 of the ratio 
of maximum average particle size to average particle size of the considered component in-
creased by one. 
2. If the packing density of one-dimensional particles of crushed rock is taken equal to 0.6, then 
the multiplicative coefficient, which is a product of partial coefficients that take into account the 
distance between the particles along the 3D space axes, is 0.956. 
3. The i-th component particles of crushed rock can be placed in the free space formed after 
packing all the previous components, if the volume of free space exceeds the ratio of the actual 
volume of the particles of the component under consideration to the packing density of the sin-
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gle-dimensional particles to a degree representing an exponential function of the component 
serial number (except for the sequence number equal to 2). 
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