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Abstract. The article deals with determination of the second- and higher-
order perturbations in Cartesian coordinates and body motion velocity 
constituents. A special perturbed motion differential equations system is 
constructed. The right-hand sides of this system are finite polynomials 
relative to an independent regularizing variable. This allows constructing a 
single algorithm to determine the second and higher order perturbations in 
the form of finite polynomials relative to some regularizing variables that 
are chosen at each approximation step. Following the calculations results 
with the use of the developed method, the coefficients of approximating 
polynomials representing rectangular coordinates and components of the 
regularized body speed were obtained. Comparison with the results of 
numerical integration of the equations of disturbed motion shows close 
agreement of the results. The developed methods make it possible to 
calculate, by the approximating polynomials, any intermediate point of the 
motion trajectory of the body. 

1 Introduction 
One of the crucial tasks associated with trajectory measurements is the determination of the 
partial derivatives of rectangular coordinates that make up the body motion speed with 
respect to the initial conditions. In operations [1-2] added auxiliary functions, which are 
degree series with respect to the auxiliary variable. In operations [3-5] outlined ways of 
using universal variables in a number of tasks of mechanics to determine disturbances by 
the method of variation of arbitrary constants. In this case, it is convenient to consider the 
components of the initial values of the radius-vector and velocity as osculating variables. 
New methods for determining disturbances keep the standard features of the classical ones, 
while calculating the disturbances, the small parameter method is used, which makes it 
possible to obtain asymptotic decomposition of the solution. Recently, Picard method for 
integration of differential equations is more commonly used, which leads to a convergent 
process of successive approximations that gives a solution to a system of differential 
equations.  

The error of the solution depends on the accuracy of the initial approximation of the 
perturbation function. General principles of the development of perturbation theory in  
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coordinates were analyzed in operations [6-8] studied the use of regularizing variables for 
calculation of trajectories of motion. in operation. The results of this research show that the 
use of regularizing variables increases the computer-based accuracy of calculations and 
significantly reduces the calculation time.    
A crucial task of mechanics is to approximate the rectangular coordinates that make up the 
body speed and time in case of disturbed motion by algebraic polynomials of the lowest 
degree with respect to the auxiliary variable with a predetermined degree of accuracy. 

One of the important problems in mechanics is the approximation of rectangular 
coordinates constituting the body velocity and time when the motion is perturbed by the 
lowest degree algebraic polynomials relative to the auxiliary variable with a predetermined 
degree of accuracy.  
This paper describes a special system of differential equations of the perturbed moving 
body and this system is integrated through successive approximations method, which using 
the coordinates and constituents body velocity, take the form of polynomials in powers of 
some auxiliary variable. Its own independent variable is taken at each approximation step. 

2 Mathematical model     
In works [9-10] there were found the equations which integrate Cartesian coordinates, 
constituents of regularized velocity and time with auxiliary variables iС as follows:     
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where ( ) ( , 1,...,7)k
iq i k  - - is partial solutions of equiations in variations of regularized 

equations of a problem with 2 bodies. In order to find partial solutions ( ) ( , 1,...,7)k
iq i k    it is 

necessary to differentiate the general solution of regularized equations of an unperturbed 
problem with 2 bodies, by initial data 0 0 0 0 0 0 00, , , , , ,t        . 

In work [11] the following equations for defining first degree perturbations in values iС  
were found 
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where , ,ix iy izE E E   - is auxiliary variables which represent polynomials by degrees of 

regularized variable   
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1 1 1, ,x y z - coordinates of a perturbing body, 0 0 0, ,x y z - coordinates of the body 
studied in unperturbed motion. 

Thus, expression for values iС  may be represented as follows 
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Coefficient 1  corresponds to the moment of collision of 

the body being studied with the perturbing body. Then, functions ( )iS u  are shown 
as polynomials by degrees u as follows 
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and functions ( )iC u   for trajectories of hitting into perturbing body look as 
follows 
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(i=1,2,4,5,7)  
Let us enter a new regularizing variable:  

                                                             1w u                                         (9) 

Then, expressions  (8)  will have the following form: 
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Integrals are easy to calculate: 
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(i=1,2,4,5,7)  

Thus, first-degree perturbations in auxiliary coefficients  iС   have the form: 
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(i=1,2,4,5,7)  
Particular solutions for equations in variations of regularized equations of a problem 

with 2 bodies, are shown in work [11] as polynomials by degrees of regularizing variable 
 .By putting expression 
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polynomials by degrees of regularizing variable w . By a similar substitution, receive 
unperturbed-motion polynomials 0 0 0 0 0, , , ,x y x y t   by degrees of variable By putting the 
obtained expressions into formulae (1) receive rectangular coordinates , ,x y  constituents 
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errors may be done arbitrary small at selection of a respective value .n  In 
expressions (14) for rectangular coordinates, constituents of regularized velocity 
and time of perturbed motion of spacecraft, there are available terms at 1

w
 and ln .w

Enter a new regularizing variable 1v  as follows: 
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Thus, substituting relations (15) and (16) into expressions (14), we have that 
rectangular coordinates , ,x y z , constituents of regularized velocity , ,x y z   , time t - 
are integral functions of a new regularizing variable 

1v , which enables to present 
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the specified functions by terminating polynomials with the accuracy degree preset 
in advance. 

Let us define values 
1  and 

1  from boundary conditions, which have the look 
at 

1, 1,u u v   at 
11, 1.u v   The value of regularizing variable u  or respectively 

w  correlates with the moment of the body studied getting into the effective area of 
the perturbing body and 1, 1.u w 

 
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Where as    1 1.   

Thus, by carrying out a number of substitutions of the independent first-degree 
perturbation variable in rectangular coordinates, constituents of regularized 
velocity and time of motion, bodies are represented as terminating polynomials of 
comparatively low degree and relatively regularizing variable with a sufficiently 
high accuracy degree. 

Functional diagram of calculation of first-order perturbations by analytical 
method, consists of the following main blocks. The first block is concluded in 
building-up polynomials which show coordinates of the perturbing body, 
coordinates, constituents of regularized velocity and time of unperturbed motion of 
the body studied by degrees of standardized regularizing variable .u Calculation 
results demonstrate coefficients of respective polynomials. 

The second block consists in representing the mutual distance square between 
the body studied and the perturbing body 2

1  as polynomial by degrees of 
independent regularizing variable  .u  

In the third block of the programme, finding of roots of equation 2
1 =0 is carried 

out with the help of iterations, i.e. determination of those values of the independent 
regularizing variable u , at which collision of the body studied with the perturbing 
body takes place and which we will call critical points. Numerical analysis of the 
closest pair of critical points in the vicinity of the main interval of variation of 
regularizing variable u  is carried out; the analysis demostrated that for trajectories 
of hitting into perturbing body, point 1u   is such critical point, at which the 
distance from the body studied to perturbing body turns to zero, the remaining pairs 
of critical points which are complex-conjugate, are at significant distances. 
Polynomials are built-up, 
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by degrees of regularized variable .u  Results represent coefficients of 
respective polynomials.  
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Block four of the programme consists in identifying the main part of 
perturbations in auxiliary variables  iC  in the form of expansion as functions ( )iS u  
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Determination of auxiliary functions ixE  and  
iyE  is carried out in the form of 

polynomials by degrees of regularized variable .u  Functions ixE  and  iyE  are 
dimensionless factors with respect to ikD

D
, where  D - is determinant of 

fundamental matrix of equation partial solutions in variations of regularized 
equations of a problem with 2 bodies [5], ikD - respective algebraic complements of 
the partial solution matrix. Entering of a new regularizing variable w  and 
determination of the main part of perturbations in auxiliary variables iC  in 
polynomial- transcendent form with respect to regularizing variable w  is 
performed. Programme’s block five represents determination of indirect part of 
perturbations in auxiliary variables iC  
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(i=1,2,4,5,7) 

as polynomials by degrees of regularizing variable w  and determination of 
general perturbations in auxiliary variables  iC   in polynomial- transcendent form 
with respect to variable w . 

Programme’s block six consists in determination of partial solutions of ( )k
iq  

equations in variations of regularized equations of problem of 2 bodies in the form 
of polynomials by degrees of regularized variable w  as well as in determination of 
rectangular coordinates, constituents of regularized velocity and time of perturbed 
motion of the body studied in a first approximation in polynomial- transcendent 
form with respect to independent regularizing variable w . Calculation results 
represent coefficients of respective polynomials. 

Programme’s block seven consists in determination of rectangular coordinates, constituents 
of regularized velocity and time of perturbed motion of the body studied in the form of 
polynomials by degrees of a new regularizing variable 1v  which is entered with the help of 
relation (15). 
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3 Conclusions 

Thus, by carrying out a number of substitutions of the independent first-degree 
perturbation variable in rectangular coordinates, constituents of regularized 
velocity and time of motion, bodies are represented as terminating polynomials of 
comparatively low degree with respect to regularizing variable with a sufficiently 
high accuracy degree. At each phase of calculations, a reduction in degree of 
respective polynomials with the help of Chebyshev polynomials and control of 
computation results by the initial and final point were carried out. Additionally, 
standardization of regularizing variable w for the purpose of reducing the degree of 
polynomials which represent the required functions with the preset accuracy degree 
on interval  1;1 was conducted.  

The suggested method may be used at simulating the deformation of metal 
ridged outer shell-plating of panels and interior shell plating made of aluminium 
foil. At developing the procedure for calculation of multi-layer construction 
structures which are subjected to the impact of shock-waves, as well in studying 
construction structures, in particular, cross-bending of cantilevers, at simulating 
tensions and deformations in construction elements effected by static loads of 
various value and configuration. As well, the procedure may be used at calculation 
of the structure in terms of seismic effect. 
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