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Abstract. The problem of parametric oscillations of an isotropic viscoelastic shallow 

shell of variable thickness under periodic load is considered. It is believed that under 

the influence of specified load, the shallow shell allows displacements (in particular, 

deflections), commensurate with its thickness. In a geometrically nonlinear statement, 

taking into account the viscoelastic properties of material, a mathematical model of the 

problem has been developed using the classical Kirchhoff-Love hypothesis. Using the 

Bubnov-Galerkin method based on the polynomial approximation of the deflections, 

the problem is reduced to the study of the system of integro-differential equations, 

where time is the independent variable. The solution of the system of integro-

differential equations is determined by the proposed numerical method. Based on this 

method, a numerical solution algorithm is described. The Koltunov-Rzhanitsyn kernel 

with three different rheological parameters is chosen as a weakly singular kernel. At the 

same time, the effect of geometric nonlinearity, viscoelastic properties of material, as 

well as other physicomechanical and geometric parameters and factors (rheological 

parameters, thickness, initial shape imperfections, aspect ratios, boundary conditions, 

excitation coefficient) on the area of dynamic instability is taken into account. The 

results obtained in this study are in good agreement with the results and data obtained 

by other authors. 

1 Introduction 

Modern technology, construction and other spheres of industry employ complex 

structures, the durability, reliability and high efficiency of which are of great importance. At 

present, light and durable thin-walled structures such as plates, panels and shells under force 

loads are widely and effectively used in construction, aircraft and rocket production. To 

ensure the required rigidity in the right places, thin plates or shells may have smooth 

swellings. Optimal design of such structures is impossible without creating mathematical 

models that allow an account of the maximum possible number of factors affecting their 

performance. In recent years, it has become increasingly important to search for the best 

configuration, especially to the study of the dynamic problems of thin-walled structures of 

variable thickness. Therefore, their design scheme should be considered taking into account 
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smooth-variable or step-variable shell thickness. Under significant effects there appear large 

deflections in such elements; to calculate such structures it is necessary to conduct research 

in a geometrically nonlinear statement. 

In world practice, special attention is paid to the use of light composite materials in 

construction, this leads to the need to consider the structures with uniform and non-uniform 

properties of material. The behavior of thin-walled structures has not yet been studied 

sufficiently due to the difficulty of accounting for the factors listed above and the need to 

solve cumbersome non-linear boundary value problems. 

Therefore, the development of new mathematical models of strain of thin-walled shell 

structures of variable thickness under various types of loading, as well as effective methods 

and algorithms for their study is an important task. 

A series of publications is devoted to the study of the behavior of plates, panels and shells 

of constant thickness under dynamic loads in an elastic statement. A review of the results of 

these studies can be found in [1, 2]. 

Nonlinear dynamics of plates and shallow shells is considered in the studies by A.C. 

Volmir [2], V.A. Krysko [3] and other authors. The geometrically nonlinear theory of shells 

of step-variable thickness has been developed by V. Karpov [4]. 

A review of the study of plates and shells behavior under dynamic loads with regard to 

the viscoelastic properties of material can be found in [5]. 

The torques of a rectangular panel with clamped edges as an element of ship structure 

under uniform load are calculated and analyzed [6], taking into account transverse shear 

strains; the contribution of the corresponding shear stresses to the overall stress state is 

considered. 

In [7], the shapes of the Kirchhoff square plate with a clamped end are obtained and 

analyzed before and after the loss of stability in the case of compound bending (uniform 

transverse load in combination with compressive end load). 

Several mathematical models of deformation of reinforced shell structures, including 

those that account for various properties of the material are described in [8]. For the structures 

composed of orthotropic and isotropic materials, linearly elastic and physically nonlinear 

problems, as well as the problems of creep, are considered.  

The solution of the plane problems of the theory of elasticity on the basis of the 

approximation of stresses is considered in [9]. To build the solution, the additional energy 

functional is used. 

Finite element models for plate bending problems are constructed in [10] on the basis of 

approximations of moment fields. Bending and torsion moments are approximated over the 

area of finite elements by piecewise constant functions. 

Research carried out in [11] gives a solution to the problem of bending of a geometrically 

nonlinear cantilever rod according to the theories of Kirchhoff and Cosserat-Tymoshenko 

with the subsequent comparison of the results obtained. 

Two models of deformation of reinforced orthotropic shells under dynamic load are 

considered in [12]. Mathematical models are based on the Kirchhoff-Love hypothesis of shell 

theory. The models take into account geometrical nonlinearity, properties of an orthotropic 

material and reinforcement elements. 

In [13] nonlinear vibrations of viscoelastic thin rectangular plates subjected to normal 

harmonic excitation in the spectral neighborhood of the lowest resonances are investigated. 

The von Karman nonlinear strain-displacement relationships are used and geometric 

imperfections are taken into account. 

In [14], a dynamic impulse bending of a double curvature shell clamped on all edges is 

investigated using the Novozhilov nonlinear theory of shells and the Lagrange equation of 

motion. 
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The behavior of an elastic shallow shell under external load is studied in [15] by the finite 

element method for different boundary conditions. 

The research in [16] is devoted to the review of the methods for studying linear and 

nonlinear oscillations of plates and shells.  

However, at present, the behavior of plates and shells of smooth-variable thickness, at a 

joint account of mentioned important factors, is insufficiently studied and requires further 

study [17, 18]. 

Parametric oscillations have become the subject of numerous studies applied to various 

mechanical systems with distributed parameters, in particular to rods, plates and shells. 

The effect of initial imperfections on the parametric vibrations of cylindrical shells is 

analyzed in [19]. The shell has moderate amplitudes of vibrations; therefore, geometrically 

nonlinear theory is used. 

In [20] a problem of obtaining natural oscillation frequencies of an isotropic cylindrical 

shell with variable thickness and density along the generatrix is considered based on V.Z. 

Vlasov’s semi-membrane theory. For one relation between the change in thickness and 

density we obtained an exact solution for finding the base oscillation frequency of a 

cylindrical shell with a variable thickness and density along the generatrix. 

A vector-matrix method for solving nondecaying systems of nonlinear integro-

differential equations with variable coefficients and with weakly singular kernels of the 

hereditary theory of viscoelasticity based on the use of quadrature formulas is proposed in 

[21].  

Despite the numerous published papers devoted to parametric oscillations of thin-walled 

structures, the number of papers devoted to the dynamic stability of thin-walled structures, 

with account of viscoelastic properties of material, is very limited [22–25]. 

2 Materials and Methods  

In this paper, parametric oscillations of a viscoelastic double curvature shell with sides a and 

b, variable thickness h=h(x,y) and curvature radii of the middle surface R1 and R2 under 

axial dynamic loads (see Fig.1) are investigated. Let the shell be dynamically loaded along 

the side a with a periodic load P(t)=P0+P1cost (P0, P1=const;  is the frequency of the 

external periodic load). 

 

Fig. 1. Shallow shell of double curvature of variable thickness. 
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where kx=1/R1, ky=1/R2. 

Assume that the shell has initial deflections w0=w0(x,y). 

In a general case, the law of change in shell thickness can be of any type. Consider some 

of the laws of change in thickness. Let the thickness of a thin-walled structural element vary 

according to the following law ( ) xrhxh −+= 12sin1
2

1
)( 0 . Figure 2 shows the thickness 

change profiles for different values of the thickness change parameters. 

 
a) 

 
b) 

 
c) 

 
d) 

Fig. 2. Change in shell thickness depending on the value of the parameter r: a) r=0; b) r=0.5; c) r=1; 

d) r=2. 
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Now consider the case when the thickness varies linearly ( )xhxh *1
2

1
)( 0 += . Here, 

consthh == )0(0 , −  is the parameter characterizing the thickness variability. Note that 

this law leads to a linear increase in thickness of structural element in the direction of the Ox 

axis (see Fig.2). 

Full and initial deflections, as well as the displacement of the shell are approximated in 

the form  
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– are unknown time functions; ( ),, yxnm  

( ),, yxnm  ( )yxnm , , ;,...,2,1 Nn =  Mm ,...,2,1=  – coordinate functions satisfying the 

given boundary conditions of the problem. 

 

  
a) b) 

Fig. 3. Change in shell thickness depending on the parameter value 
 : a) 2.0=

; b) 5.0=
. 

Substituting (2) into the system of equations (1) and performing the Bubnov-Galerkin 
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E

p
p

y
y = ,  




,  t ,  

( )


tГ
,  

crP

P0
0 = ,  

crP

P1
1 = , 

and maintaining the same notation, to determine the unknowns ( )tww nmnm = , ( )tuu nmnm = , 

( )tvv nmnm = , we obtain the following system of nonlinear integro-differential equations: 

( ) ( )   
= = = =




−+−−
N

n

M

m

N

n

M

m
nmklnmnmklnmnmklnm veudua

1 1 1 1
11

*
1 1  

( ) ( ) 0
1

1,
001

1,
01

2

=






−


+






−



+
− 

==

M

jm
ijnmijnmklnmij

N

in
nmnmklnm

yx
wwwwgwwf

kk
, 

( )   
= = = =




−







+


−−

N

n

M

m

N

n

M

m
nmklnmnmklnmnmklnm veudvb

1 1 1 1
22

*
2

1
1  
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( ) ( ) 0
1

1,
002

1,
022

2

=






−


+






−



+
− 

==

M

jm
ijnmijnmklnmij

N

in
nmnmklnm

xy
wwwwgwwf

kk
, 

 ( )   
= = = =

+−+
N

n

M

m

N

n

M

m
nmklnmklnmnmklnm wtpwc

1 1 1 1

2
3 cos21  (3) 

 

( ) −




−− 
==

M

jm
ijnmijnmklnmij

N

in

wwwwg
1,

003
1,

 

( )( ( ))+−++






−− 
==

ijijklnmijijklnmijijklnmij

M

jm
nm

N

in

wwfveudw 0444
1,

*

1,
3 1  

( ))+−++ ijijklnmijijklnmij wwfve 044  

( )( ) ( ) kl

M

sjm
rsijrsijnmklnmijrs

N

rin

qwwwwwg 42
3

1,,
00

*

1,,

1121 −=






−−+ 
==

, 

( ) nmnm uu 00 = , ( ) nmnm uu 00  = , ( ) nmnm vv 00 = , ( ) nmnm vv 00  = , 

( ) nmnm ww 00 = , ( ) nmnm ww 00  = , 

where 
( )

2
0

2

2

13









−


=

b

h
EPcr  – is the static critical load; ( )4*2

0
2 bPEh cr =  – is the 

frequency of major tone of oscillations; 0
222 4 −= *

klnmklnmklnm pfp ; 

12

*222



=

klnm

klnm
klnm

p

p
; the remaining constant coefficients in this system are related to 

coordinate functions and their derivatives. 

The system of integro-differential equations (3) with the corresponding boundary and 

initial conditions describes a mathematical model of the problem of nonlinear parametric 

oscillations of viscoelastic shallow shells of double curvature of variable thickness. Thus, the 

Mathieu-Hill equation (the third equation of system (3)) corresponding to the nonlinear 

system under consideration is obtained. 

The integration of system (3) is performed using the numerical method proposed in [21]. 

The weakly singular Koltunov-Rzhanitsyn kernel of the form [27] is used as a relaxation 

kernel.  

3 Results and discussion 

The results of calculations performed on the computer are reflected in the graphs shown in 

Figures 4-7. 

Figure 4 shows the effect of viscoelastic properties of shell material on its behavior. An 

analysis of the results obtained shows that an account of viscoelastic properties of material 

( ) ( )( )




−−++−+  
= =

N

n

M

m
nmnmklnmnmklnmnmklnm wwfveud

1 1
0333

*
3 1
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leads to a narrowing of the area of dynamic instability. 

 

Fig. 4. Dependence of the deflection on time at A=0 (1); 0.05 (2); 0.1 (3). 

Figure 5 shows the results of studying shell behavior at different values of the curvature 

kx. The figure shows that an increase in this parameter leads to an increase in the amplitude 

of oscillations and a phase shifting. 

 

Fig. 5. Dependence of the deflection on time at kx=0 (1); 20 (2). 

The results of studying shell behavior at different values of the thickness variation 

parameter   are shown in Fig.6. The change in thickness of viscoelastic shell according to 

the above law, at equal volumes of the shell of constant and variable thickness, leads to a 

decrease in the maximum displacements. The results of the study show that an increase in 

this parameter leads to an increase in the amplitude of oscillations and a phase shifting. 
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Fig. 6. Dependence of the deflection on time at * = 0.3 (1); 0.5 (2); 0.8 (3). 

Figure 7 shows the results of studying shell behavior at various values of . The figure 

shows that an increase in this parameter leads to a decrease in the frequency of oscillations. 

Numerical results are obtained for the law of thickness variation, shown in Fig.2. 

 

Fig. 7. Dependence of the deflection on time at =1 (1); 2 (2). 

4 Conclusions 

A mathematical model has been constructed and, in a general form, a system of nonlinear 

integro-differential equations in displacements with variable coefficients has been obtained 

for the problems of parametric oscillations of viscoelastic isotropic shallow shells of variable 

thickness with account of large strains. Resolving systems of nonlinear integro-differential 

equations of the problem of parametric oscillations of viscoelastic isotropic shallow shells of 

variable thickness under periodic loads with allowance for large strains have been obtained. 

The Bubnov-Galerkin method is used to discretize spatial variables and obtain 

nondecaying systems of integro-differential equations for the time function of the problems 

on nonlinear parametric oscillations of viscoelastic shallow shells of variable thickness that 
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present the Mathieu-Hill equation in a general form. 

An algorithm has been developed for the numerical solution of nondecaying systems of 

nonlinear integro-differential equations of the problems of nonlinear parametric oscillations 

of viscoelastic shallow shells of variable thickness, and a set of applied programs has been 

created based on the developed algorithms, which allows to study the effects of viscoelastic 

properties of material, rheological parameters, the law of thickness variation, coefficient of 

excitations and geometric nonlinearities on the dynamic instability areas. As an example, the 

results of the numerical solution of the problem of nonlinear parametric oscillation of shallow 

shell of double curvature with hinged-supported edges and linearly variable thickness are 

presented. 
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