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Abstract. Adhesion refers to the ability of concrete to resist slipping of 
reinforcement under loading in reinforced concrete products. The term 
"reinforced concrete" is considered as a uniform composite material as 
long as there is adhesion on the contact surface between the reinforcement 
and the concrete. In case of disruption of the reinforcement and concrete 
interaction, the construction is represented by separate elements. The aim 
of this work is to simulate the process of glass composite and metal 
reinforcement adhesion with cement concrete. To solve this problem, 

analytical modeling was performed in the ANSYS 19.0 Workbench 
software package, with the help of which the nature of damage 
accumulation in the rebar and the distribution of stresses in the concrete 
mass are determined. 

1 Introduction 

The problem of the reinforcement compliance and its mutual work with concrete under 

longitudinal load is one of the main problems of the reinforced concrete theory. Therefore, 

a huge number of domestic and foreign scientists took up this problem. The main theory 

describing the adhesion between a mutually displaced rebar and concrete is the theory by 

MM. Kholmyansky [1]. 
The objective of the current study is analysis of the stress-strain state (SSS) and 

determination of adhesion forces in the zone of interaction of reinforcement with concrete 

under the action of static axial pulling force. 

To simplify the computational apparatus without reducing the overall accuracy in the 

adhesion analysis in the considered admissible displacement boundaries at the crack joint, 

an elastoplastic concrete deformation diagram (Prandtl diagram), on the basis of which 

M.M. Kholmyansky and his students (Fig. 1a) approximated the normal adhesion law, is 

used: 

𝜏𝑥 = 𝐹(gx) = 𝐵
𝑙𝑛⁡(1+𝛼𝑔)

1+𝛼𝑔
     (1) 
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where B and α are adhesion parameters; gx is the mutual displacement relative to the 

concrete mass. 

Under the elastoplastic law, adhesion is characterized by the parameters τ0⁡⁡and  g∗. 
However, Fig. 1b shows the formation of the section with plastic deformations at exceeding 

the maximum stress value. Therefore, to establish the parameters 𝜏0 и 𝑔0, the stress-strain 

state (SSS) in the area of anchoring the rebar in concrete should be considered for 

reinforced concrete structures [3]. 

To simplify this task, we consider a concrete prism centrally reinforced with a rebar 

with a symmetrically applied load from two sides (Fig. 1c). 

   
Fig. 1. Rebar and concrete interaction: a) «τ − g» diagram: elastoplastic and normal adhesion law [2]; 
b) distribution of adhesion stresses along the length of the reinforcement under elastoplastic law; c) 
calculation of the adhesion at the equilibrium of the concrete element; d) equilibrium of dx rebar 
element. 

Consequently, the equilibrium equation for this problem takes the following form [1]: 

𝜎𝜎(𝑥) = 𝜇(𝜎0 − 𝜎𝑠(𝑥))                                      (2) 

The equation of the mutual deformation of the concrete and the rebar: 

𝑔(𝑥) = 𝑔0∫ [(
𝜎𝑠(𝑥)

𝐸𝑠
−

𝜎𝑏(𝑥)

𝐸𝑏
)]

𝑥

0
⁡𝑑𝑥⁡⁡⁡⁡⁡                                     (3) 

Using the previously obtained equation for shear stress τ (x), it takes the following form: 

𝜏(𝑥, 𝑔) ⁡=
𝐸𝑠𝐷

4(𝑙+𝑛𝜇)
⁡ ∙

𝑑2𝑔

𝑑⁡𝑥2
                                       (4) 

To form a system of equations physically describing τad and g(х), the adhesion law is 

represented in the following form: 

𝜏(𝑥, 𝑔) = 𝐹(𝑔(𝑥))                                   (5) 

The function⁡F(g(x)) represents the adhesion law, in which the shear stresses τ (x) are 

taken as a constant value along the entire length of the rebar anchoring. The dependence 

F(g (x)) is proposed in the form of an elastoplastic diagram τ − g [4]: 

а) b) 

d) c) 
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𝐹(𝑔) = {
𝑘𝑔(𝑥)⁡, при⁡⁡⁡𝑔(𝑥)/𝑔∗ ≤ 1

𝑘𝑔∗, при⁡⁡⁡𝑔(𝑥)/𝑔∗ ≥ 1
                                   (6) 

Having obtained the system of equations, the calculation at the elastic stage and later in the 

elastoplastic stage of work should be considered. 

If the elastic stage is g(x)/g∗ ≤ 1, with x = L, then the maximum displacement under 

loading is: 

𝑔0 =
𝜎𝑠0(𝑥)

𝐸𝑎𝜆
𝑡ℎ𝜆𝐿                                      (7) 

The transition from the elastic stage to the elastoplastic one is characterized by the 

formation of sections with constant shear stresses τ0 when the maximum displacement is 

reached g0 > g∗. 
If the elastoplastic stage is g(x)/g∗ ≥ 1, with x = L, then the maximum displacement 

under loading is: 

𝑔∗ =
𝜎0

𝜆𝐿𝑐𝑡ℎ𝜆𝐸𝑠
                                              (8) 

The proposed system of equations allows to set the amount of the rebar displacement 
relatively to concrete. However, this dependence is applicable only for steel and composite 

reinforcement. In addition, it does not take into account elastoplastic deformations in 

concrete, which requires a deeper and more complete study of this problem. 

2 Mathematical modeling for describing the rebar adhesion with 

concrete 

This paper presents the results of the development of a mathematical model which takes 

into account the contact interaction of reinforcement with concrete [5]. 

The model of Menetrey-Willam [6] based on the Willam-Warnke yield surface [9], 

including the dependence on three independent invariants of the stress tensor, was adopted 

as a concrete model. 

The Willam-Warnke yield surface differs from the Mohr–Coulomb yield surface by the 

absence of sharp edges, which may cause difficulties in solving the Mohr–Coulomb surface 

stress. It also has some characteristics of the Drucker-Prager model [8] and can simulate 

similar materials. 

The Menetrey-Willam model is best suited for modeling the behavior of bound inert 

materials, since it allows to take into account the redistribution of the strength 

characteristics inside the material. 
The Willam-Warnke yield surface in the Haigh-Westergaard stress coordinates is 

determined by the formula [7]: 

𝑓𝑀𝑊 =
𝑐2

𝑐3
[√2𝜉 + 𝑟𝑝] + 𝑝2 −

1

𝑐3
                                        (10) 

where 𝑐2 and 𝑐3⁡are functions of material parameters and hardening/softening 

parameters, respectively. 

The hardening and softening parameter is defined as follows [7]: 

𝑅𝑡̅̅ ̅ = 𝑅𝑡Ω𝑡с                                                           (11) 

𝑅𝑐̅̅ ̅ = 𝑅𝑐Ω𝑐                                                                 (12) 
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𝑅𝑏̅̅̅̅ = 𝑅𝑏Ω𝑐                                                               (13) 

Ω𝑡𝑐 = {
Ω𝑡 ⁡, 𝑘𝑐 ≤ 𝑘𝑐𝑚

Ω𝑐Ω𝑡, 𝑘𝑐 > 𝑘𝑐𝑚 ⁡⁡
                                                (14) 

where 𝑘𝑐𝑚 is a material parameter;⁡Ω𝑐 ⁡and⁡Ω𝑡 are compression and hardening/softening 

functions,  respectively, which depend on compression or hardening/softening parameters 

of⁡𝑘𝑐⁡⁡и⁡𝑘𝑡⁡;⁡𝑅𝑡 is the strength limit under uniaxial tension; 𝑅𝑐 is the strength limit under 

uniaxial compression;  𝑅𝑏 is the strength limit under biaxial compression. 

To describe the work of the reinforcement material, a model of the generalized Hooke's 
law was adopted with the following assumptions: 

 The material is considered to possess orthotropic properties when specifying physico-

mechanical characteristics of the glass composite reinforcement (GCR). For this purpose 

the Orthotropic Elasticity material model [5] is used to describe the GCR operation. This 

model is also based on Hooke's law, but it has a material stiffness matrix in which the 

deformation characteristics in the YX and YZ planes are symmetric. 

 As it was previously established, the primary reason of adhesion failure of GCR with 

concrete is the detachment of the reinforcement profile from the main rebar. A cohesive 
zone model (CZM) [9] is used to simulate this process, where the destruction of the binder 

matrix is regarded as a gradual separation of the reinforcement periodic profile surface from 

the main rebar with the subsequent delamination. In this model, the destruction of the 

contact surface occurs gradually, taking into account the accumulation of defects in the 

adhesive matrix inside the contact layer. The CZM is also used to simulate a bonding 

cement gel in the contact layer between the reinforcement and the concrete mass. 

The CZM model is described by the following equation [9]: 

𝜎𝑛 = 𝐾𝑛𝑢𝑛(1 − 𝑑𝑛)                                            (15) 

where 𝜎𝑛 is stress;⁡𝐾𝑛 is contact stiffness;⁡𝑢𝑛 is tangential displacement in the contact 

area;⁡𝑑𝑛 is a violation parameter of the adhesive matrix. 

The violation parameter of the adhesive matrix: 

𝑑𝑛 = (
𝑢𝑛−𝑢𝑛̅̅ ̅̅

𝑢𝑛
)(

𝑢𝑛
𝑐

𝑢𝑛
𝑐−𝑢𝑛̅̅ ̅̅

)                                         (16) 

where 𝑢𝑛̅̅ ̅ is displacement (slip length) in the contact area at the maximum stress; 𝑢𝑛⁡⁡
𝑐 is 

displacement in the contact area with the destruction of the adhesive matrix. At⁡𝛥𝑛 ≤ 1, at 

𝛥𝑛 > 1,⁡0 < 𝑑𝑛 ≤ 1, where  𝛥𝑛 =
𝑢𝑛

𝑢𝑛̅̅ ̅̅
. 

In this case, the critical destruction energy is calculated as: 

𝐺𝑐𝑛 =
1

2
𝜎𝑚𝑎𝑥𝑢𝑛

𝑐                                             (17) 

 The GCR strength can be evaluated by various criteria, which can directly identify the 

probable pattern or mechanism of destruction, for example, indicate whether matrix or fiber 

failure will occur. Therefore, each strength criterion can be assigned a coefficient, which 

will show the priority in the analysis of the material destruction. For example, when 

stretching the GCR, the rebar external fibers are more likely to be destructed, and this 

criterion should be assigned a higher fiber destruction strength coefficient. In this paper, the 
strength criterion for the GCR is the Puck criterion [10], which is appropriately suitable for 

recording materials with an orthotropic fibrous structure and highlights the destruction of 

the reinforcement fibers, delamination of the material and interfiber destruction inside the 

material. 
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The destruction of a separate GCR fiber is described in terms of maximum values of 

permissible stresses or strains: 

𝑓𝑓 =
𝜎1

𝑋
= 1⁡𝑖𝑓⁡𝜎1 ≥ 0⁡то⁡𝑋 = 𝑋𝑡 ⁡, 𝜎1 < 0⁡⁡то⁡𝑋 = 𝑋с                   (18) 

𝑓𝑚 =
𝜀1

𝑋𝜀
= 1⁡𝑖𝑓⁡⁡𝜎1 ≥ 0⁡то𝑋𝜀 = 𝑋𝜀𝑡 ⁡, 𝜎1 < 0⁡⁡то⁡𝑋𝜀 = 𝑋𝜀с        (19) 

If we consider the destruction of the matrix material, the dependence will take the 

following form [10]: 

𝑓𝑚 =
𝜎2
2

𝑌𝑡𝑌𝑐
+ (

𝜏12

𝑆
)
2

+ (
1

𝑌𝑡
+

1

𝑌𝑐
)𝜎2                            (20) 

where 𝑋, 𝑌 are material strength limits for uniaxial tension or compression; 𝑅, 𝑆 are 
material strength limits on shear. 

As in many criteria, the destruction is considered to be the moment when the relative 

strength reaches 1. Therefore, the function takes the form [10]: 

𝑓𝑚 = 𝑚𝑎𝑥⁡(𝑓𝑓 , 𝑓𝑚)                                   (21) 

Due to the twisting of the GCR fibers, an additional reduction coefficient should be 

introduced to calculate the delamination (for the rebar it is 𝑓𝑤
𝑖𝑓
= 0,945), which eventually 

leads to the following formula [10]: 

1

𝑓𝑤
𝑖𝑓
√[(

1

𝑅⊥
+−

𝑝⊥𝜓
+

𝑅⊥𝜓
𝐴 )𝜎𝑛]

2

+ (
𝜏𝑛𝑡

𝑅⊥⊥
𝐴 )

2

+ (
𝜏𝑛1

𝑅⊥∥
𝐴 )

2

+
𝑝⊥𝜓
+

𝑅⊥𝜓
𝐴 𝜎𝑛 = 1⁡⁡⁡𝑎𝑡⁡𝜎𝑛 ≥ 0⁡             (22) 

то⁡
1

𝑓𝑤
𝑖𝑓√[(

𝑝⊥𝜓
−

𝑅⊥𝜓
𝐴 )𝜎𝑛]

2

+ (
𝜏𝑛𝑡

𝑅⊥⊥
𝐴 )

2

+ (
𝜏𝑛1

𝑅⊥∥
𝐴 )

2

+
𝑝⊥𝜓
−

𝑅⊥𝜓
𝐴 𝜎𝑛 = 1⁡𝑎𝑡⁡𝜎𝑛 < 0⁡              (23) 

The constants for the GCR layers have the following values: 

𝑝⊥⊥
+ = 0,18;𝑝⊥⊥

− = 0,18;⁡𝑝⊥∥
− = 0,24;⁡𝑝⊥∥

+ = 0,285. 
 Steel is an isotropic material by structure that has identical mechanical properties in 

all directions. However, steel reinforcement has a yield point, therefore, to specify plastic 

deformations, a bilinear isotropic model was adopted, according to which the yield surface 

expands evenly in all directions. The initial slope of the curve (σ-ε) is equivalent to the 

elastic modulus of the material. Beyond the limit, an increase in plastic deformation is 

observed. To describe this dependence, the concept of "tangent modulus", which cannot be 

less than zero or greater than the elastic modulus, was introduced. The maximum equivalent 

stresses according to Mises are used as the destruction criterion. For steel reinforcement 
used in our research it was 610 MPa. 

3 Analysis of the results of mathematical modeling 

The numerical simulation of the SSS in the contact area was carried out in the ANSYS 19.0 

Workbench package based on the results of mechanical testing of reinforcement and 

concrete according to GOST 24452-80 and GOST 12004-81. The obtained mechanical 

characteristics of concrete and reinforcement are given in [12]. 

The adhesion of reinforcement samples with concrete B25 was determined using a pull-
out test made on concrete cubes with a 100 mm edge according to GOST 31938- 2012. All 
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the samples hardened and gained strength in normal conditions (90 days, t = 20 ± 2 °C, w = 

65%) [11]. The depth of the samples in concrete was l/d = 5 mm. The movement of the 

rebar relative to concrete was fixed by an indicator with an accuracy of 0.001 mm installed 

on the loaded end of the rebar. 

 

 

Fig. 2. The scheme of the sample for pull-out test 

For convenience, the shear stress τad was used as a result of measuring the bearing capacity: 

⁡⁡τad =
N

lP
⁡        (24) 

where N is the force applied; l is the anchoring depth; ⁡P is a circle perimeter. 

During testing, the load applied to each of the 10 samples was recorded using a force-

measuring sensor. Simultaneously, the displacement of the rebar was measured (Δ) relative 
to the upper end of the concrete. Subsequently, a generalized curve “shear stresses - 

displacements” was built. 

The mutual displacement of the reinforcement relative to concrete was determined by 

the formula: 

𝛥 = 𝛥1 − 𝛥𝑙𝑎                                                  (25) 

where 𝚫𝟏is the fixed value of the rebar displacement; 𝜟𝒍𝒂 is the reinforcement 
elongation between fasteners and the reference end of the sample, which was defined as: 

𝛥𝑙𝑎 =
𝑁𝑙

𝐴𝐸𝑎
                                                   (26) 

where l is the initial length of the reinforcement between the fastener and the reference 

end of the sample; A is a rebar area; Eais an elastic modulus of the reinforcement. 

Fig. 3 shows the convergence of the experimental data with the results of numerical 

simulation. It can be seen that the model describes the rebar displacement in the concrete 

mass. However, the maximum value of the bearing capacity was 5% lower than during the 

experiments. This is due to the fact that a smaller amount of plastic deformations in the 

concrete mass was put into the model. It should also be noted that the nature of the shifts 
initially represented a linear relationship, which was reflected by the actual shift schedule. 

For a more accurate reflection of the first solution stage, we had to add two additional 

conditions. Firstly, at the first loading stage, there is a gluing effect of the cement gel which 

takes the form presented in the formula 6. Secondly, this is the reinforcement compression 

by the concrete mass due to shrinkage and hardening of the concrete (Fig. 4). Furthermore, 

these conditions are not used in the calculation of the inelastic stage of the material, which 

allows to obtain a more accurate match of the calculated and experimental data for the 

entire range of materials. 
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Fig. 3. Dependency "shear stresses - displacements" 

4 Stress-strain state in a concrete mass 

The paper deals with the SSS in a concrete mass with a force equal 0.85 of the destruction 
load. At higher loads, an avalanche-like increase in stresses and plastic deformations is 

observed, which is not interesting for us. 

 
Fig. 4. Distribution of adhesion forces of reinforcement periodic profile with concrete 

It should be noted that the magnitude of adhesion, and, as a result, the SSS in the 
embedment area consists of a number of factors shown in Fig.4. The fundamental factor is 

the mechanical mesh of the rebar periodic profile with the concrete consoles. When 

considering the SSS, it is important to pay special attention to the concrete consoles formed 

between reinforcement profiles. Fig. 4 shows consoles from the two sides which in parallel 

take the distribution of compressive stress arising from the load transfer by the 
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reinforcement profile [11-18]. Besides, to fulfill the equilibrium condition, tensile stresses 

are formed in the upper face.  

For the composite reinforcement, due to the lower stiffness of the profile, the concrete 

consoles fully work in compression, and since the profile is threaded at an angle of 30 

degrees, the compression platform is formed at the same angle between the profile 

windings for equilibrium (Fig. 5b). The rest of the mass works on longitudinal tensile 

stresses in the Y plane.  

                                                   a)                                                          b) 

 

Fig. 5. Distribution of normal stresses along the Y axis of the samples in the concrete mass: a) metal 
reinforcement; b) GCR 

                                                    a)                                                          b) 

 

Fig. 6. Distribution of shear stresses along the XY plane of the samples in the concrete mass: a) metal 
reinforcement; b) GCR 

Kholmyansky M.M. noted that the classic concept of engineering strength of the concrete 

for solving the contact problem is incorrect to use. Therefore, to solve the problem, it is 

required to use the strength characteristics of concrete on a scale of 1 - 0.01 mm. 

It is known [1] that increasing the sample sizes leads to increasing the probability of 
microdefects in the material structure. Therefore, when decreasing the sample sizes, the 

strength of concrete usually increases. In this case, it is confirmed by the fact that the 

maximum compressive stresses formed under the consoles reach 100 MPa, while tensile 

stresses are up to 2 MPa and more.  

The results for comparing mutual shear stresses along the XY plane are presented in 

Fig. 6. The dependence of stresses takes an exponential form for both reinforcements; 

however, the magnitude has different values, since there are leaps in the place of the 

periodic profile, which are about 4 times lower for GCR than for steel. This is due to the 
higher elastic modulus and the homogeneous structure of the metal reinforcement, which in 

turn leads to pronounced leaps. When the embedment depth increases, the shear stresses of 

both reinforcements smoothly fade out (Fig. 7.). 
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Fig. 7. Shear stress distribution on the XY plane along the embedment depth  

When considering plastic deformations, it can be seen that they are formed in those places 

where later the formation of cracks and the subsequent destruction of the adhesion will 

occur. For example, for the samples with metal reinforcement plastic deformations are 

formed in the cut-off areas of concrete consoles (Fig. 8a), while for GCR deformations 

these deformations are pronounced only along the main rebar in the planes of compressive 

stresses (Fig. 8b). 

a)                                                          b) 

   
Fig. 8. Maximum plastic deformations in a concrete mass: a) metal reinforcement; b) GCR 

5 Damage accumulation in reinforcement  

Experimental studies with steel reinforcement showed that the destruction of the rebar did 
not occur. So the maximum stress from the destruction load reached 0.783. At the same 

time, the value from the destruction load in the rebar periodic profile in the embedment area 

was 0.25. This testifies to the fact that during the pull-out testing the steel reinforcement 

profile did not exhaust its reserve, and the decisive reason was the destruction of concrete 

in the contact area. 
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Fig. 10. Failure in the GCR periodic profile  

When considering a numerical model with GCR, the adhesion failure occurred between the 
main rebar and the periodic profile (CZM). In addition, the reinforcement showed the 

damage from tensile and compressive stresses in the GCR periodic profile. Their values 

were 1.579 and 1.065 from the Puck destruction load (Fig. 11 b, c), which was confirmed 

experimentally (Fig. 10). 

                                                    a)                                                          b) 

           
                                                     с)                                                        d) 

                              
Fig.11. Damage accumulation in the reinforcement: a) metal; b) fibers under tensile stress in GСR; c) 
fibers under compressive stress in GСR; d) matrices under tensile stress in GСR 

It should be noted that the destruction load of the matrix under the tensile stress in the 

embedment area of the main rebar was 0.76 by Puck. This explains the rare cases during 

testing, when the reinforcement was destructed along the rebar without cutting off the 
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periodic profile (Fig.11d). The same destruction was observed when testing the GCR with 

the embedment depth of l/d≥6, since the destruction value of the matrix increased to 0.97 

by Puck, and the strain intensity value was below the maximum by 15%. 

Conclusion 

1. The analysis of existing models of concrete deformation showed that the Menetrey-

Willam model should be used to consider the distribution of stresses in the contact layer of 

concrete, taking into account hardening and softening of the concrete mass. 

2. The developed numerical model of reinforcement adhesion with concrete has expanded 

the existing ideas about the SSS in the contact area of concrete with reinforcement. This 
allowed to establish the nonlinear character of the distribution of shear and normal stresses 

over the entire embedment depth. Thus, leaps of stresses are observed in the contact area of 

concrete and reinforcement periodic profile, which become the cause of major cracks.  

3. The numerical simulation of the GCR embedment in the concrete mass based on the 

ANSYS 19.0 Workbench software package according to the previously determined 

mechanical characteristics of materials allowed to determine the nature of the damage 

accumulation in the reinforcement and to reveal that the destruction of composite 

reinforcement occurs from tensile stresses by breaking the fibers or the GSR matrix. 
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