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Abstract. The article is devoted to the development of a geometric model
of surfaces of dependent sections to solve the problems of winding by
continuous fibers in the direction of the force and its related process of
automated winding of composite materials. A uniform method for
specifying the surfaces of dependent sections with a curvilinear generator
and a method for solid modeling of the shell obtained by winding or
calculation methods are described.

1 Introduction

Methods of automated winding and calculations are one of the main methods for
obtaining structures from composite materials. In the process of winding, carried out on
machines with numerical control, the surface of the mandrel is laid with tension continuous
tape composed of unidirectional fibers, threads, strands or bundles impregnated with a
binder. After obtaining the required thickness and structure of the shell, polymerization is
performed, the final curing of the binder.

2 Problem definition

In the process of winding, various defects may occur: the tape does not fit to the surface or
the tape slides from a given curve along which it is laid. You can track these defects in the
virtual model of the process for which you want to create a geometric model. The
construction of a generalized geometric model of tape laying on a curved surface was
described in [1]. In this paper, it is assumed that the simulation of winding ("dry" and
"wet") is carried out in a single way — by means of a smooth mapping of a rectangle into a
three-dimensional Euclidean space. Also describes methods of analyzing a circuit, the belt
laying on the subject of equilibrium filaments Lena and their contact with the surface. All
builds use the surface of class C2. It should be noted that in the process of laying the tape
on the surface only its first layers are laid on the surface. The remaining layers are placed
on the surface formed by the previous layers. Thus, the formed surface is continuously
changing. These changes naturally affect both the analysis of the packing patterns of the
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ribbon and the law of motion naturallanguage mechanism of the machine, which was
described in the article [2]. To take this fact into account, it is necessary to modify the
surface shape in accordance with the variable thickness of the tape [3]. Note that the
presented in the paper [4] the method of surface modification is applied to the class of twice
continuously differentiable surfaces, the dependent variable of the closed cross sections
with curvilinear generatrix, which is in the process of change is incident to the plane
parallel to the coordinate plane. We denote this class of surfaces [3] . In this paper [4] we
propose a uniform method for describing class surfaces . The surface of technological
mandrels often consist of several parts — constructive (surface of the product) and
technological (serving for the reversal of the tape). Such surfaces can be specified by
different parametric representations. Therefore, to work with such a surface in a virtual
model, there is a problem of smooth connection of different parts, coordination of
parametrization on the structural and technological parts. With a uniform specification of
class surfaces, all these problems are automatically eliminated, since the entire surface of
the technological mandrel (all its parts) will be described by one twice continuously
differentiable, explicitly given vector function. This greatly simplifies the subsequent
computer task of the surfaces of the class in question.

When calculating the parameters of the shell obtained by winding or laying out, there
are important geometric problems of constructing intermediate surfaces of deformable
solids [6] of a multilayer structure. The article offers a method of modeling a solid body
obtained by winding or calculation methods.

3 On one method of approximation of functions

Let [ab] be a grid A:a=x,<x, <..<Xx, = b . We denote the S, v(A) linear space of

splines of degree m of defect v with nodes on the grid A.. The elements of this space are the

. o .. s e€C""ab
functions s, (x) satisfying the conditions: ™ [’ ]

[xl.;x"], i=0,1l,.,n—

on each segment

1, the function is " (x) a polynomial of degree m. It is known [7]
that the dimension of the space Smv(A) is m+1+v(n-1). Next, we consider the space Sz 1(A),
since the surfaces used must be twice continuously differentiable. In the space Si,1(A) there
is a basis consisting of finite functions N,+1,(xX), called B-splines [8]. Extend grid A, adding

oox, <..<x,<a b<x, <..<x
further points -l , n+l

defined by the following relation [4]:

n+m Then the functions N, (x) can be

- - 1 )
N"’J(x)= MNm—l,[(x)Jr Sy (X); Nl,i(x)= { e [XH’XI )’

m-l,i-1 )
X Xist ™ Xicm 0, x¢ ['xi—Dxi )

i Xiemil

So, any function s3](x) can be represented as a linear combination of B—splines

n+2
831 (x): 2771' 'N4,i+1 (x)
=0
Let the values of the function f in the grid nodes be known f, :f(xl. ), i=01,...,n.

Then in the space S3,1(A) we can find a single function g, 1(x) satisfying the conditions [4]:

5,0 =i =00 (5, )= () (55,) () = /() (1)
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(0;5 — a)the notation of the

We introduce a)(f, 5) max ‘f(x+h) f(X),

x,x+hela; b
<o

continuity module of the function fand D' f the derivative of the order f function .
Then, if f e C*[a;b],k =1,2 and h = max|x,, - id [4]:

D5, ~DPf| < MO LDV ) 0< p<k. 2

Clasb)

where M) =9/8; M) =4, M) =19/96; MP =2/3; MP =4.
As shown in [5], if the grid A is uniform, x, =a+i-h, i=0,l,...,n, h =(b—a)/n, the

function s, (x) can be written explicitly:

n+2

$3,(%) = 277, 4041 )

3.
= Yn+1(j’1) Yn+1(j’2) Y (] I’l+1) 6 ! ,j=1,--.,7l+1’
"\ E(m+1) E(n+1) E(n+l) 6

3

My =102k (o) 10,00 =11, + 20 f(x,).
where
Y, (i, /)= (=1)" - Almin(i, j)-1)- Alk —max(i, )), i, j=1....k
E(k)=2-A(k—1)—A(k—2), k=3,

ol -G} fealfoal

3 2.3

b

It should be noted that the vector n = ( . )T is the solution of the equation

Ay n=0f, +h'(x,). 6106 f, 31, = f"(x,))"

where the matrix

2100...000
1410...000
)p+1 _10141...000

A, = (aij [ N

0000...141
0000..012

-2

it has a strict diagonal predominance, moreover min — V=1.
1<i<n+1 i

Let the function f* be defined on a segment [a —&, b+ 8], & >0 and a uniform grid
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At x;<x,<x,<x,=a<x<..<x,=b<x

n+l<x
X, =a+ih i=-3,.,n+3 h=(b—a)/n

n+2

<X

n+3°

Chosen so, that x |, x,,, € [a—.s‘;b+g] and f; = f(xl.), i=-1,..,n+1. Consider a
n+2

cubic spline 55, 277! that satisfies interpolation s, 1()c) fi, i=0L..,n

4 t+]

and boundary condltlons

(53,1)()‘0):(/[1 _ﬁl)/(Zh)Q (531)( ) ( ] f;l—l)/(zh)'
Lemma 1. If a function f € C* [a —&b+ 8], k =0,1,2,itis a fair assessment:
D7D, | OB D rh) 0= pei.
where
oY =6; 01" =33/8; 0" =10; 0¥ =163/96; 0 =11/3;0%) =10
Evidence. IffeC[a—g;b+g]. Enter the symbol :( il )T. Vector

Niwn = (771 e )T is the solution of the equation

A, =07 +05(f, = £1) 610061,1,30, = 05(f — £,0)) -

We introduce the following notations

70:f‘l’.fl:fO""’.]?zHl:fn’.]?zHZ:fn1’ ij (f,, ,f)

Then, obviously, there is equality

n+1 ( Ln+l T1n+1) (foz f fo ﬁl >2f1 _fo _.f‘27""2.fn—1 _.f;i—Z _fn’f” _Zf;ﬁl + f” _zfnl]

Since the matrix of the system has a strict diagonal predominance [6], the estimates are

valid Hn|n+1 NIM <2w(f,h) (here and in the future for the vector e =(e,,...,e, )’ its
nom [

From equality Mo =M = S1+ Jois Mua =N, + frs = [t follows
HnOM _ﬁ.wz 340)( f, h). Since cubic B-splines are non-negative and form a partition

[a;b] of one on the segment,

‘ EE X Z‘f fi n =T

n+2
4 i+1 (‘x) + Z

41+1 Z‘f i

Note that the following is true x €[x X ] for values

S r6)-7]-N

i=0

Ny () + 40(f,h)

4 z+1 ‘f j‘ : N4,,+1 ‘f /+l
‘f‘ j+2

N 4,542 (x) +

s 1)~ T ] N )= 200, )
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n+2

If fec' [a —g;b+g]. Consider the spline o, (x): ZQVI- “Nyiw (x) satisfying

interpolation  conditions o, l(xl,): fi,i=0,1,...,n and the boundary -conditions
o 1(xo): f’(xo), o’ l(xn ) = f’(xn ) Then for it to be a fair assessment (2).
7 . . .
If €., = (é’i,,,,, g’j) . Then, obviously, the following equality holds

n+1 ( 1Ln+1 Cl,n+l):(h(fl _ﬁl _.f’(xo)jﬂo’""o?h[ fﬂ+12hfﬂ ! f(xO)jJ ;

2h

n0—§0=n2—¢2—2{73yf‘—f(%ﬂ; nmz—ng=nn—¢n+m{f“ fﬂl—f(&ﬂ

By virtue of Lagrange's theorem

7o) 2

=)=

2h

(i =f)+ (= 1)

= g‘(f,(xo)_ f’(xo + elh))+ (f’(xo)_ f'(xo - 92/1))‘ < ha)(f’,h), 6, € (0;1)’ i=12.

£)= L <ol )

S3ha)( f ’,h). Then, using expressions for derivatives of the B-

Similarly, we obtain an inequality

- ‘; 0,n+2

spline [4],

771 C.:/i - é’i*l
3|

53,(0)= 0, (<) < 3o 7, 1), | %lxsi Ny s (6)< 60 £, )

based on the estimates (2), we obtain
() =55, (x) <[ (x) = 03, (x) + oy, () = 55, )\<fh (/" h);
f)=s3, () <1 (x) =03, (o) + o, () = 55, () < 10017, ),

If feC?[a—é&;b+¢]. Then Taylor's formula

2

Fu = £y £0)= £ )£ 1 )+ 1 & el & e ix,)

()20

2h

Therefore }, < E a)( VAl h) .
2

Similarly, the inequality is obtained fFx,)- i +12hf nl < ( 1" h) -

3

Therefore Hn 2 =Copn gf}ﬁw( 7 h) Therefore,

‘Su ) 0-31( )‘<37w(f h) "(x)—O'“( )‘<3ha)f h ‘531 0-31( )‘ (f"h)
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From here we obtain the estimates presented in the Lemma. The Lemma is proved.

Lemma 2. If ‘ ¥, <8,i=0]1,.,n. Then,if g, l(x), o, 1(x)' cubic splines, satisfying
the interpolation conditions
b- .
s3]( ) y,,0'3]( ) z,x,=a+ilH, H = a, i=0l..n
n

nd boundary  conditions 1, (x,)= 3. 51, (x,) =51, 0}, (v ) = 03,0, (3, )=

n >

moreover , it is a fair assessment:
T 125+6HS' |, 245 +12HS'
HS3’1 - 0-31 ('[a b] < 66+ 3H§ - 0-3’1 C[a;b] - T’ 3.1 - 0-3’1 C[a;b] - T

Evidence. Imagine both the spline in the form

n+2 n+2

0-3,1(x)=zﬂi'N4,i+l , S31 Za N4z+]

Lethim a‘i,j ( i ’a)T ﬁlj (ﬂz’ ’ﬁ)T yo’ ’yn) H =(ZO""’Zn)T'

Then
A0y, (3y0+HSO,6yl, -6y, ,,3y, — Hs! ) ;
A, B, =03z, +Ho}, 62,,..,62, 3z, - Ho,)'
Therefore,
Ay (01 =B )= B0 = 20 )+ Hlst = 03), 60 =260, =2, )30, = 2,)+ H(o =, ))
Note that

a,=a, -2Hs,, a,,=a,+2Hs,, p,=p, -2Ho;, B,,=p, +2Ho,

Therefore, there is an assessment Hao o2 —Bois

< 6Hy -ZH+3H5’ <66 +3HS' - Hence,

given that B-splines are nonnegative and form a partition of one on the segment, we obtain

500 ()= 0, (0) = 3 (@, = BN ()

i=0
’ ’ 1
S31 (x)_ O3, (xj “H

<66 +3HJ'

S~ 4 lers IV, () 22501

n+2

S )2 = ) o = I, (o) 2 2407 2

(@)=l () =

HZ

The Lemma is proved.
Consider another type of conditions imposed on the spline s3:(x), which arise in the
interpolation of periodic functions ( f; = f, ). These are conditions of the form

s3,(x)=f,i1=01...m (33,1 )(q)(xo) :(S3,l )(q)(xn)a g=0,L2 3)
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As it is known [12], there is a single function s, (x)from Ssi(A) satisfying the

conditions (3). In addition, if f e C* [a;bl k=0,,2 , then the estimates (2) are valid, and
for k =0 the constant M =7/4.
If the grid A is uniform, the spline s, 1(x) can be written explicitly [4]:

n+l

53,(x) = 2771 4042 )

6 Syl
= 2V L ) S =00 =00 =T

where
®(n)=4-An—1)-2-A(n—-2)-2-(-1), n>4;

A(n)=(2+ﬁ) 2:5(2_6) n=-1;

(1Y (= i)+ 1y aG=2)) j=1;
W (i, /)=1(=1)"(4-4(j—2)- A(n—i)— A(j —3)- A(n—i)+ i=12,..,n
+ (1) Al 1) A —2)A(n—i-1)) 1< j<i;

Note 1. Since b-splines [7] form a partition [a;b] of one on the segment, it follows from
the condition that Due to the uniqueness of the interpolation spline £ = f; =...= f, it
follows that,

Ny =My ==y = fo == foy
Let feC” ([a;b]x [c —&d+ 5]), £>0, 0<m<?2 it satisfy the condition:
D(S’O)f(a +0, v) = D(S’O)f(b — O,V), 0<s<m
for any value v e [c;d] (here D(“’ﬂ)f =0’ £ /0“ud”v). We choose a uniform mesh [14]

Acus<..<u,,, u,=a+i-h,i=-3,..n+3, h, :(b—a)/n;

A iV <<V, V,=CHjhy, j=3,k+3, h,=(d—c)/k <&

and, put £, = flu;v, )} i=00.n; j= =10, k+1 F, = (/o S for, ) -

Define the functions

n+l

277,, 4l+2 J=-10,L...k+1 u e[a;b]

where i =Moo My = s> sy =Thy> 1, = Z l+1 S S,

Consider the function
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k+2

Z(p, N, () (,v)e[a;b]x[c;d]
3 goE ;"'05 ( ( )_gfl(”))

1\ i1 PRVA. RS 6-g(u
“’f(”):[;(k(fll)) S]{E(k(ilz)) YE((Z +1) l)j §5.0)

erlu)-

0.5- (gk+1(“)_ gk—l(u))

Theorem 1. The following assessments take place

< QR DO f 1, )+9-27 - M Z”ﬁ

v

e ¢ - polg) D" f,h,)-

C([asb]x[e;d])

< QP LD £ 1 )+ OM R DO );
0<p<m.

HD(/J»O)f _D(/f,O)

blx[e;d])

For m=2 inequality holds:

Ql ( (1’1)f,hv)+18M1(2)%W(D(2’0)fahu)'

vV

HDllf Dllg‘

C([a:b]x[e;d])

Evidence. For each fixed value [15] u e[a;b], we denote w,ga)(v) a cubic
interpolation spline that satisfies the interpolation conditions a and the boundary conditions

" ’ D(a,O) , _D(a,O) , " ! D(a,O) , _D(a,O) ,
()= DL =D ) (g D ) - [y,

u
v

Have

‘D(O’ﬂ)f(u, v) — D(O’ﬂ)g(u, v)‘ < ‘D(O’ﬂ)f(u, v)— D(ﬂ)wl(lo)(v)( + ‘D(O’ﬂ)g(u, v)— D(ﬂ)wl(lo)(v)

By virtue of Lemma 1, the estimate is fair
DO f(u,v) - D) < O Pl DO f ), 0< p<m.
Note that for a fixed value y e [a;b], function g(u,v) it is a cubic [16] spline that
satisfies the interpolation conditions g(u’v/_)z g/.(u), j=0...,k and boundary condition

poD - M; (0.1) - () =g, (1)
g(u,vo) o D g(”’vk) 2h,

v

Since the g; (u) interpolation spline satisfying the interpolation conditions
g, (u [)z f (u,.,vj), i=0,1,...,n and boundary conditions of the form (3), then, by virtue
of the estimates (2), we have

DY, ~Df (v ) <M ADf ) 0< B<m “)

Therefore,
‘g(u,vj)— wflo)(vJ < Mém)h,:”a)(D(m’o)f, hu), j=0,.,k.

In addition, we have the inequality
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m

<M (DO f ) i =0,k

From here, on the basis of Lemma 2, we can conclude that

DO g(u,v)- DPWO(v) 9.2 - M Z‘:;a)(D('”’O) f.h,) 0<psm.

v

So, we come to the following assessment

DO (u,v)- DO Pglu,v) < O oD f b, )49 27 - M) %Q(D('"")) f.h,)

Note that & (v)= D(ﬂ’o)g(u,v) for a fixed valueu € [a;b], it is a cubic spline that [17]
satisfies the interpolation o, (v j ) =pV” )gj (u) j =0,...,k and boundary conditions.

' DY \u -p¥ ,l(u)_ ' _D(ﬁ) k+1(u)_D(ﬂ) k—l(u).
(0] () Pl DR, (5 ) PReale)_ DT

v

Due to inequality (4) we have

&, v,)- W, ) < MR D"0f 1) j=0.... k.

u u

Besides,
U ! m-f3
(@) ()= 0”) () < M2 —al D0 1 1, ) i = 0.k

Based on Lemma 2, we conclude that

o,(v)- wiﬂ )(v)‘ <M ém)hl’,"*ﬁ w(D(’"‘O) f.h, )

By virtue of Lemma 1, there is inequality
DO f(uv) = w () < O P m LD f ).
So, get

H DO g _ pleo) g‘ <Qn-Ppnr w( D" POf )49 MU a)(D(”’*O) b )

C([a:bx{ezd])
We consider separately the case. By virtue of Lemma 1, inequality holds true
‘D("l)f(u, v)— D(I)WS)(VX < Ql(l)a)(D("l)f, hv)
By virtue of the second inequality of Lemma 2, we have

‘D(l’l)g(u,v)— D(l)WS)(Vj <1 8M1(2) Zia)(D(Z’O)f, h, )

v

Thus,
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D f(u,v)- DMg(u,v) < QYD £, )+ 180 % (D11,

v

The theorem is proved.
Consequence. Subject to certain relationships between /1, A, grid steps, for example,

h, <h, you can select a grid sequence and get a sequence of functions g p(u,v),

anbea) = O

p =12,... such that limng - f

P>

4 The application of the results obtained

The theorem proved in section 1 allows to define in a uniform way surfaces of dependent
sections with the curvilinear generatrix (class Cli[”] ,0<m <2) which at the movement and

change remains incident plane of the parallel set coordinate plane I1; .
Let ?(u,v), (u,v) € [a;b]x [c —-&d+ 8]7 &> 0 be a parametric representation of such
a surface [18] . Each u-line of such a surface is a curvilinear generatrix of the surface,
incident plane, parallel to the coordinate plane. Choose A, X A a uniform grid on the
rectangle [a;b]x [c;d ]:
A tus<..<uy=a<..<u,=b<..<u,,;

o b—a
u,=a+ih,i=-3,..n+3;h, = .
n

A vi<..<yy=a<..<v, =b<..<v,;;

v.o=c+jh, j=-3n..k+3h = dk‘c <min(h,,é) .

Consider a surface X , with a parametric representation

Bosl09)= BN, 0 )<t [sd] B
3 Goé“?"' 0.5 (Gl(u)_ G 1(”))
B,(u)= (;k(;(j ’11)) %(,L(j ’12)) Ykg((l{ ”"’S UJ o g ”(
+ + + 6- u
3 Gf@)— 0.5- (G/m(u)_ Gk—l (“))

n+l

G )= M, -N,,,(u), j=-10L..k+1, uelab]
i=—1

M, =M,, M—l,j:Mn M ':le’M":7Z\P(i+1’s)'?(us—l’vj)'

—1,j° n+l,j

Theorem 2. The surface X belongs to the class Cél .
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Evidence. As noted, each u-line surface X is a curvilinear generatrix of the surface
incident plane parallel to the coordinate plane. Therefore, one of the coordinates of the

vector F(M,vj)= x(u,vj)lT + y(u,vj )7 + Z(u,vj)/? does not depend on the variable. Let

for definiteness, this coordinate will be applicate. Then Z(uH,v i): Z,8= 1,2,...,n. By

virtue of observation 1, (Mij’l;):zj for everyone i. As a result (G/(u),E)ZZj.

Therefore (E’ ; (u),lg)z const. Ah, so, (Rn‘k (u,v),E) does not depend on u. Thus, any u-
line surface Z”’ « incident on a plane parallel to the Oxy coordinate plane.

The theorem is proved.
By theorem 1 for a sequence of vector functions Rn k(u,v) defining surfaces of

R, —T

dependent sections of the class CrzIl will be executed lim
h,—0

— 0. Thus,
(bl — O+ THUS

the geometric part of the determinant [7] of the class surface CFZI] it consists of a point

frame of sections of such a surface [19], and the algorithmic part of the determinant is given
by the vector function (5).

The results of section 1 can be applied to the construction of a vector function that
determines the winding body for some of its intermediate layers. Moreover, such a vector
function can be written out explicitly.

If 7’(u,v,j), (u,v)e [a1;b1]x[az;bz]a j=0,,.,s the intermediate layers of the
body (the surface of the «class C™). Choosing a uniform  grid
Wy, =a,<..<w,=b,, h= (b3 —a, )/S , the body itself will set the vector function:

n+2

R(u,v,w) = zgi(u’v)'N4,t+1(W)’ (w,v,w)ela;;b |x[ay;b,]x[ay;b;].

=0

3. 7:{;4,\;,0% h, - R, (u,v,w,)
B(u V): Ys+1(j31) Ys+1(j’2) Ys+l(j’s+1) 6'}" M,V,l ]21 s+1°
MY UB(s 1) E(s+1) 7 E(s+1) g?uyﬁ—g R
3.7 u,v,s)— ,‘,'R:«(“,V,WS)

B, (u,v)= B, (u,v)—ZhW “R! (u,v,w,), B, (u,v)= B, (u,v)+ 2h,,-R! (u,v,w,).

Here R/ (u,v,w,),i=0,sare arbitrary twice continuously differentiable vector
functions satisfying the condition

DR (a,+0,v,w) =D **OR (b —0,v,w),0<a<m,i=0,s

Figure 1 shows the simulation of the winding surface of a rectangular profile and the
surface of rotation. Figure 2 shows the results of solid modeling [20].

11
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a) b)

Fig. 1. Simulation of the winding, where: a) the surface of a rectangular profile, b) the surface of
rotation.

¢) body d) the layers of the body
Fig. 2. Results of modeling a solid body.

5 Conclusion

The article presents the method of approximation of functions of two arguments, the
approximation error is found. The main advantage of the developed method is that the
approximating function is written explicitly. The proposed method is applied to the
construction of the determinant of the surface of dependent sections with variable
generatrix. Also, the method of layer-by-layer modeling of a solid body is presented, the
distinctive feature of which is the ability to specify only the points of sections of layers
using an explicitly given vector function. The application of the developed methods for
geometric modeling of bodies obtained by winding and laying out of composite materials is
shown.
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