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Abstract. The article describes the study carried out by the authors of the 

use of parametric geometric models to reduce the complexity of the design 

of parts that follow the theoretical contour of the bearing surfaces of the 

aircraft. Also, an algorithm that allows eliminating the existing ad hoc 

concavity profile is considered. 

1 Introduction 

Reducing the time of designing aviation equipment is inextricably linked with the 

increased productivity of the engineer in the preparation of design documentation. One of 

the most powerful means of reducing the complexity of design using geometric modeling 

systems is parametric modeling. In [1], studies of the use of parametric geometric models 

carried out by the authors to reduce the complexity of the design of parts emerging on the 

theoretical contour of the bearing surfaces of the aircraft are described. 

Further studies have shown the particular importance of the quality of the surface used 

for the effectiveness of parametric modeling. 

To simplify the design of bearing surfaces, they are decomposed into guiding and 

forming lines and mathematical dependencies that make up the basis of the surface and 

determine its shape inside the resulting cells. 

The guiding lines for the bearing surfaces are aerodynamic profiles. The forming lines, 

as a rule, are percentage lines for which the profiles are parameter carriers. 

Thus, the aerodynamic profile is the initial information when designing the wing of an 

aircraft, and the requirement of maintaining its shape in the design and manufacture of the 

wing comes to the fore as compared with the requirements of layout, manufacturability, etc. 

At present, information about the contour profiles is usually represented as an ordered 

discrete point basis. The main means of describing point-specific curves used in the design 

of longitudinal and transverse carcass lines of bearing surfaces in geometric modeling 

                                                 
*Corresponding author: ipocebneva@vgasu.vrn.ru 

 

 
  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019(110 1100

-2018
10 10

SPbWOSCE
74 74

  © The Authors,  published  by EDP Sciences.  This  is  an  open  access  article  distributed  under  the  terms  of the Creative
Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/). 



systems are currently spline functions belonging to the class C 2, whose equations describe 

the behavior of a flexible rail. 

When specifying the aerodynamic profile in the form of a discrete point basis, the 

coordinates of the points are obtained by measuring an experimental model. In this case, 

errors are possible due to both the accuracy of the manufacturing model and measurement 

accuracy. With relatively large errors in the source data, the spline interpolating the profile 

bypass as well as the graphs of its derivatives have pronounced oscillations. In these cases, 

it is necessary to smooth the bypass by deviating from some given points. The issues of 

smoothing discretely defined contours are considered in [2]. 

To solve this problem, the interpolation method developed by A. D. Tuzov with 

smoothing based on the use of parametric splines is very effective. A feature of the method 

is that it offers a clear iterative process of smoothing and proved that this process is 

convergent. The advantage of this method of smoothing is that in the process of smoothing, 

you can fix certain points. 

The error of setting the i-th bypass point in this method is defined as half the amount of 

deviation of the staff at point i when it is released, while fixing the rest of the contour at the 

same time. 

2 Problem difinition 

As studies have shown, in some cases, the use of smoothing with cubic splines does not 

allow eliminating the existing ad hoc (unintended) changes in the curvature sign in the 

spline nodes. 

An example of such a circuit is shown in Fig. 1. The figure shows the upper half of the 

symmetric convex profile of the vertical tail of the medium-haul passenger aircraft. This 

profile can be divided into two sections with different nature of ad hoc changes in the sign 

of curvature. 

Section "A" is made up of several points of the tail section, on which concavity of the 

circumference takes place. 

Section "B" is formed by a set of points in the middle part of the bypass, on which it has 

oscillations. 

This paper discusses the smoothing of section "A". As can be seen from Fig. 1, the 

curvature of the bypass on this section has a sign opposite to the required, and its graph 

monotonously decreases throughout the section. The calculations showed the impossibility 

of removing the existing concavity according to the method of A.D. Tuzov due to the very 

small (10-8 ... 10-6 mm) values of the error in specifying the points of the site. 

 

Fig. 1. Graph of the curvature of the profile sections not smoothed by the method of cubic splines 
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Thus, the error δ_i used in the method of A.D. Tuzov, geometrically interpreted as half 

the deviation of the elastic slats at point i when it is released, is in this case not an effective 

enough criterion for smoothing the bypass. 

The development of a smoothing technique for the type of contour under consideration 

requires: 1. Determining more efficient smoothness criteria than the one proposed in the 

method of smoothing splines; 2. Developing an algorithm to bring the coordinates of the 

smooth contour in accordance with the found smoothness criteria. 

3 Definition of Criteria for Smooth Contour 

To find more accurate criteria for the smoothness of the curve, the authors considered a 

method developed by E. V. Egorov for finding the equation of the basic integral curve for 

describing the lines-parameters of the aircraft surfaces described in [3]. A distinctive 

feature of the method is that the curve equation is searched based on the condition of its 

convexity. 

This method allows one to find an equation with a convex curve 𝑆(𝑥) ∈ 𝐶2, passing 

through two points 𝑎 and 𝑏, having the second order of fixation, i.e. if at these points the 

values of the function are determined, its first and second derivatives (Fig. 2). The method 

is designed to describe the curved lines of the surface of aircraft surfaces that have a 

constant curvature sign on certain sections of the numerical axis; therefore, to describe 

them, we choose a function with a constant sign of the second derivative over the entire 

segment (since convex curves are considered  𝑆𝐼𝐼(𝑥) ≤ 0). 

The equation of the base integral curve is an 8th degree polynomial of the form: 

= 𝑎8𝑥8 + 𝑎7𝑥7 + ⋯ + 𝑎2𝑥2 + 𝑎1𝑥 + 𝑎0.     (1) 

Due to the even degree of the polynomial used, curved lines of this type under certain 

boundary conditions do not always exist. Therefore, in addition to the method of 

determining the coefficients of equation (1), this method defines the necessary and 

sufficient conditions for the existence of a base integral curve used to test and change the 

coordinates of the original points. 

In view of the special requirements imposed on the coordinates of points that serve as 

the initial data for constructing a basic integral curve, we assume that the boundary 

conditions for its existence can be used as effective smoothing criteria ensuring the 

constancy of the curvature sign of the smooth bypass. 
 

 

Fig. 2. Source data for constructing the base integral curve 

To find the equation of the curve S (x) satisfying the given conditions, an affine 

transformation of the segment [x_a, x_b] is performed. The coordinate origin is placed at 

the point x_a, S (x_a), while the scaling factors along the axes are equal: k_x = 1 / (x_b-

x_a), k_y = 1. The boundary conditions are converted to the form: 

𝑥𝑎 = 0;  𝑥𝑏 = 1;   𝑆(0) = 0;   𝑆(1) = 𝑆(𝑥𝑏) −  𝑆(𝑥𝑎); 
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𝑆𝐼(0) = 𝑆′(𝑥𝑎)(𝑥𝑏 − 𝑥𝑎);  𝑆𝐼(1) = 𝑆𝐼(𝑥𝑏)(𝑥𝑏 − 𝑥𝑎); 
𝑆𝐼𝐼(0) = 𝑆𝐼𝐼(𝑥𝑎)(𝑥𝑏 − 𝑥𝑎)2;   𝑆𝐼𝐼(1) = 𝑆𝐼𝐼(𝑥𝑏)(𝑥𝑏 − 𝑥𝑎)2. 

 To find the coefficients 𝑎0, 𝑎1, … , 𝑎8 of the equations (1), the following system of 

equations is solved: 

𝑆𝐼𝐼(𝑥) = −(𝑎0𝑥3 + 𝑏0𝑥2+𝑐0𝑥 + 𝑑0)2;

𝐵̅ = ∫ 𝑥𝑆𝐼𝐼(𝑥)𝑑𝑥
1

0
;

𝐴̅ = − ∫ 𝑆𝐼𝐼(𝑥)𝑑𝑥
1

0
.

      (2) 

 Here is the expression 

𝑆𝐼𝐼(𝑥) = −(𝑎0𝑥3 + 𝑏0𝑥2+𝑐0𝑥 + 𝑑0)2       (3) 

 

this, according to the accepted assumption, the equation of the second derivative of the 

desired approximating function, from which, having  𝑥 = 0 , one can find the coefficient 

𝑑0 = √−𝑆𝐼𝐼(0). 

Equations 

𝐵̅ = ∫ 𝑥𝑆𝐼𝐼(𝑥)𝑑𝑥
1

0
,       (4) 

  

and 

 

𝐴̅ = − ∫ 𝑆𝐼𝐼(𝑥)𝑑𝑥
1

0
,       (5) 

  

in which 

  

𝐵̅ = 𝑆(1) − 𝑆(0) − 𝑆𝐼(1), 
𝐴̅ = 𝑆𝐼(1) − 𝑆𝐼(0), 

are received subject to  𝑆𝐼𝐼(𝑥) ≤ 0 of the following expressions: 

    𝑆(1) = 𝑆(0) + 𝑆𝐼(0) + ∫ (1 − 𝑥)𝑆𝐼𝐼(𝑥)𝑑𝑥
1

0
;    (6) 

𝑆𝐼(1) = 𝑆𝐼(0) + ∫ 𝑆𝐼𝐼(𝑥)𝑑𝑥
1

0
.       (7) 

 

These relationships are derived in the theoretical foundations of finding the base integral 

curve [4] from the energy justification of its existence. 

Necessary conditions for the existence of a base integral curve. 

The necessary conditions for the existence of a basic integral curve are determined by 

the properties of polynomials of even degrees and the features of the geometric method 

proposed for solving the system of equations (2). 

Necessary conditions for the existence of a base integral curve determined by the 

properties of an even degree polynomial. 

For the existence of a polynomial of even degree passing through two points, it is 

necessary that the second derivatives of the approximated function have the same sign at 

both points. Taking into account the convexity condition of the approximable function, we 

obtain the following necessary conditions for the existence of a base integral curve [5]: 

𝑈1 = 𝑆𝐼𝐼(0) ≤ 0;       (8) 

𝑈2 = 𝑆𝐼𝐼(1) ≤ 0.       (9) 

4 Geometric representation of the system of equations for 
determining the coefficients of the base integral curve 
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Consideration of equation (3), as well as equations (4) and (5) after substituting (3) into 

them, shows that all three equations for unknown coefficients 𝑎0, 𝑏0 and 𝑐0 are equations of 

second-order surfaces (quadrics). 

Equation (3) is an equation of a pair of real parallel planes. At the same time, the planes 

will not coincide with 𝑆𝐼𝐼(1) ≠ 0 and matched with 𝑆𝐼𝐼(1) = 0. 

Equation (4) is a triaxial ellipsoid, provided that: 

𝑆(1) − 𝑆(0) − 𝑆𝐼(1) > 0. 
Equation (5) is a triaxial ellipsoid, provided that: 

𝑆𝐼𝐼(0) > 15.93975903(𝑆𝐼(1) − 𝑆𝐼(0)). 

Thus, two more necessary conditions for the existence of a basic integral curve are 

inequalities, under which equations (4) and (5) determine the surfaces of real triaxial 

ellipsoids. We write these inequalities in the following form: 

𝑈3 = 𝑆(1) − 𝑆(0) − 𝑆𝐼(1) > 0;     (10) 

𝑈4 = 𝑆𝐼𝐼(0) − 15.93975903(𝑆𝐼(1) − 𝑆𝐼(0)) > 0.     (11) 

When conditions (10) and (11) are fulfilled, solving the system of equations (2) from a 

geometric point of view is finding common points belonging to the surfaces of ellipsoids 

and two parallel planes (Fig. 3). 
 

 

Fig. 3. Geometric solution of a system of algebraic equations 

Since the plane intersects a triaxial ellipsoid along an ellipse, the solution of the system is 

reduced to finding the intersection points of two ellipses obtained by cutting two ellipsoids 

by the first plane and two other ellipses obtained by cutting the ellipsoids by the second 

plane. 

The fulfillment of conditions (10) and (11) is necessary for the existence of real second-

order surfaces, but does not answer the question of the possibility of their intersection, i.e. 

obtain a valid solution to system (2). 

A. Sufficient conditions for the existence of a basic integral 
curve 

Sufficient conditions for the existence of solutions of a system of equations are determined 

by the conditions for the existence of real ellipses obtained when the ellipsoids are cut by 

parallel planes. In [6], it was shown that a sufficient condition for the existence of a basic 

integral curve is the simultaneous fulfillment of at least one of the two pairs of inequalities: 
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𝑇1 = {
−4.72𝑆𝐼𝐼(1)+1.95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) + 0.48𝑆𝐼𝐼(0)

 −85.03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))
} < 0,     (12) 

𝑇2 = {−2𝑆𝐼𝐼(1) + √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0;    

 (13) 

or 

𝑇3 = {
−4.72𝑆𝐼𝐼(1) − 1.95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 0.48𝑆𝐼𝐼(0) 

−85.03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))
} < 0,    (14) 

𝑇4 = {−2𝑆𝐼𝐼(1) − √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0.   (15) 

In the most general case, the number of solutions of the system of equations (3) - (5) is 

equal to eight (Fig. 4). 
 

 

Fig. 4. Intersection points of ellipses corresponding to solutions of the system of equations 

If the source data satisfies inequalities (12) and (13), then a joint solution of the equations 

of ellipses obtained from the cross section of ellipsoids by the first plane can give from one 

to four solutions determining the coefficients of equation (3).  

The joint solution of the equations of ellipses obtained from the intersection of ellipsoids by 

a second parallel plane, provided that the initial data is satisfied with inequalities (14) and 

(15), gives from one to four more solutions. 

Methods of solving a system of equations and finding coefficients 𝑎0, … , 𝑎8 , as well as the 

method of choosing the optimal of the obtained equations of the base integral curve, are 

described in detail in [7]. 

B. Criteria for smooth contour 

The authors proposed criteria for the smoothness of a curve passing through any two points 

𝑎 and 𝑏, based on the use of necessary and sufficient conditions for the existence of a basic 

integral curve. 

To check the points for compliance with the criteria of smoothness, it requires the 

following: 

1. Enter the approximating smoothing bypass function.𝑆(𝑥). To assume: 

𝑆(𝑥𝑎) =  𝑦𝑎, 𝑆(𝑥𝑏) = 𝑦𝑏 
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2. To ensure the second order of fixation points 𝑎 and 𝑏, calculate using any method 

the values of the first and second derivatives of the approximating function at these 

points: 

𝑆𝐼(𝑥𝑎), 𝑆𝐼(𝑥𝑏), 𝑆𝐼𝐼(𝑥𝑎), 𝑆𝐼𝐼(𝑥𝑏). 
3. To carry out the valuation of the segment  [𝑥𝑎, 𝑥𝑏], i.e. bring the source data to the 

form: 

𝑥𝑎 = 0;  𝑥𝑏 = 1;   𝑆(0) = 0;   𝑆(1) = 𝑆(𝑥𝑏) −  𝑆(𝑥𝑎); 
𝑆𝐼(0) = 𝑆𝐼(𝑥𝑎)(𝑥𝑏 − 𝑥𝑎);  𝑆𝐼(1) = 𝑆𝐼(𝑥𝑏)(𝑥𝑏 − 𝑥𝑎); 

𝑆𝐼𝐼(0) = 𝑆𝐼𝐼(𝑥𝑎)(𝑥𝑏 − 𝑥𝑎)2;   𝑆𝐼𝐼(1) = 𝑆𝐼𝐼(𝑥𝑏)(𝑥𝑏 − 𝑥𝑎)2. 
4. Check the implementation of inequalities: 

𝑈1 = 𝑆𝐼𝐼(0) ≤ 0;  𝑈2 = 𝑆𝐼𝐼(1) ≤ 0; 
𝑈3 = 𝑆(1) − 𝑆(0) − 𝑆𝐼(1) > 0; 

𝑈4 = 𝑆𝐼𝐼(0) − 15.93975903(𝑆𝐼(1) − 𝑆𝐼(0)) > 0. 

If all the inequalities are fulfilled, the points a and b satisfy the necessary conditions for the 

existence of a base integral curve. 

We call the fulfillment of these inequalities the necessary criteria for smoothness. 

5. Check the execution of pairs of inequalities: 

𝑇1 = {−4.72𝑆𝐼𝐼(1)+1.95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) + 0.48𝑆𝐼𝐼(0) − 85.03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))}

< 0, 

𝑇2 = {−2𝑆𝐼𝐼(1) + √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0; 

and 

𝑇3 = {−4.72𝑆𝐼𝐼(1) − 1.95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 0.48𝑆𝐼𝐼(0) − 85.03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))}

< 0, 

𝑇4 = {−2𝑆𝐼𝐼(1) − √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0. 

When performing at least one of two pairs, the points 𝑎 and 𝑏 satisfy sufficient conditions 

for the existence of a base integral curve. 

We call the fulfillment of these inequalities sufficient smoothness criteria. 

Thus, the listed smoothness criteria can be used to check and refine the ordinates of the 

points of the smooth contour in order to ensure the constancy of the sign of the second 

derivative of the function approximating the bypass on a given segment of the numerical 

axis [8]. 

When applying these criteria for smoothing the contours depending on the convexity or 

concavity of the contour section under consideration, each point must be assigned a 

parameter p, which can take the following values: 

𝑝 = −1, if in the vicinity of this point the curve is concave; 

𝑝 = 0, if the second derivative is 0 at the point; 

𝑝 = 1, if the curve is convex in a neighborhood of a given point. 

 

Development of smoothing algorithm 

Let’s consider the smoothing section "A" (Fig. 5). 
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Fig. 5. Graph of curvature of section "A" of the smoothing contour 

Introduce the indexing of the points of smoothing bypass: 
{𝑥𝑖 , 𝑦𝑖}, 𝑖 =  0, 1, 2, … , 𝑛. 

Since to check whether the criteria for the smoothness of the bypass are met, points a and b 

should have a second order of fixation, it is required to determine the values of the first and 

second derivatives of the approximating function at these points. 

To calculate the first and second derivatives at the points of the studied bypass, the authors 

used a simplified method for modeling convex curves, proposed in [9], to calculate the 

initial data when finding the equation of the basic integral curve. 

C Application of a simplified method for modeling convex 
curves to determine the first and second derivatives of the 
approximating function 

The method consists in taking the values of the first and second derivatives of the 

approximating function S (x) at the i –th point equal, respectively, to the first and second 

derivatives of the square parabola of the form 

𝑌(𝑥) = 𝑘2𝑥2 + 𝑘1𝑥 + 𝑘0,       (16) 

drawn through the points 𝑖 − 1, 𝑖, 𝑖 + 1. 

This is possible under the assumption that in any sufficiently close neighborhood of the i -th 

point, the searched curve S (x) and the parabola Y (x) satisfy the conditions: 

𝑆(𝑥𝑖) = 𝑌(𝑥𝑖), |𝑆𝐼(𝑥𝑖) − 𝑌𝐼(𝑥𝑖)| < 𝜀1, |𝑆𝐼𝐼(𝑥𝑖) − 𝑌𝐼𝐼(𝑥𝑖)| < 𝜀2, 
where 𝜀1, 𝜀2 – preassigned infinitesimal numbers, and 𝜀1 𝜀2 → 0 at 𝑥 − 𝑥𝑖±0 → 0.  

The assumption about the validity of the assumptions made for curves describing the 

contours in aircraft manufacturing is justified in [10] with the help of experimental data. 

Taking into account the introduced assumptions, the first and second derivatives of the 

approximating function are calculated in the following sequence. First, by coordinates of 

points 𝑖 − 1, 𝑖, 𝑖 + 1, the coefficients k2 and k1 of equation (16) are found (the coefficient k0 

is not required to calculate the derivatives): 

𝑘2 =
𝑦𝑖+1−

𝑥𝑖+1(𝑦𝑖−𝑦𝑖−1)+𝑥𝑖𝑦𝑖−1−𝑥𝑖−1𝑦𝑖
𝑥𝑖−𝑥𝑖−1

𝑥𝑖+1(𝑥𝑖+1−𝑥𝑖−1−𝑥𝑖)+𝑥𝑖−1𝑥𝑖
,      (17) 

𝑘1 =
𝑦𝑖−𝑦𝑖−1

𝑥𝑖−𝑥𝑖−1
− 𝑘2(𝑥𝑖−1 + 𝑥𝑖).        (18) 

After that, the values of the first and second derivatives of the approximating function are 

determined at the point with coordinates (xi, yi) by the formulas of the corresponding 

derivatives of the parabola (16): 

𝑆𝐼(𝑥𝑖) = 𝑌𝐼(𝑥𝑖) = 2𝑘2𝑥𝑖 + 𝑘1,       (19) 

 
  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019(110 1100

-2018
10 10

SPbWOSCE
74 74

8



𝑆𝐼𝐼(𝑥𝑖) = 𝑌𝐼𝐼(𝑥𝑖) = 2𝑘2.       (20) 

The results of the calculation of the first and second derivatives at the points of section "A" 

and several points adjacent to it are given in Table 1. 

Table 1. The results of the calculation of the first and second derivatives at the points of section "A" 

and several adjacent points 

i Xi Yi SI SII 

22 1534 63.12 -0.075338983 -4.30911x10-6 

23 1652 54.2 -0.075889831 -5.02729x10-6 

24 1770 45.21 -0.07631 -2.2x10-6 

25 1888 36.19 -0.07661 -2.9x10-6 

26 2006 27.13 -0.07674 7.18x10-7 

27 2124 18.08 -0.07665 7.18x10-7 

28 2242 9.04 -0.07449 3.59x10-5 

5 Smoothing procedure 

The procedure for smoothing section "A" developed by the authors consists in checking the 

fulfillment of the smoothness criteria for the bypass on the segment [𝑥𝑎, 𝑥𝑏] and changing 

the value of yb when they fail. To ensure that the condition 𝑈1 ≤ 0 is met, a point with 

index m is selected as point a, which lies in the forward part of the bypass (not belonging to 

section “B”), in which the curve describing the bypass is rather strongly convex, i.e. the 

value of the second derivative of the approximating function is substantially less than zero: 

𝑎 =  {𝑥𝑚, 𝑦𝑚}, 0 < 𝑚 < 𝑛, 𝑆𝐼𝐼(𝑥𝑚) ≪ 0. 
As the point b, the points of the smoothed area are successively substituted. In this 

example, these will be points 𝑛 − 1, 𝑛 − 2, …, with the exception of 𝑛. 

At points a and b, according to formulas (19) and (20), the first and second derivatives of 

the approximating function are calculated, and the fulfillment of the smoothness criteria for 

the bypass is checked. If the criteria are not met, the yb is adjusted to the value at which 

they will be executed. 

Changing the values of the ordinates of each of the points has an effect on the values of the 

second derivatives in the neighboring points; therefore, you should consider not only the 

points belonging to the smoothing section as point b, but all the points of the bypass 

between α (point with index m) and n - the last point bypass Thus, the sequence of points 

selected as point b will have the following form:𝑏𝑗 = {𝑥𝑖 , 𝑦𝑖};   𝑖 = 𝑛 − 1, 𝑛 − 2, … , 𝑚 +

1;   𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 
Correction of the ordinate point 𝑏𝑗+1 can change the value of the second derivative at 𝑏𝑗 in 

the way that the criteria for smoothness in 𝑏𝑗 will stop fulfilling. Then you need to re-

change the ordinate point 𝑏𝑗.  

Therefore, the developed process of correction of ordinate values will be iterative, and the 

sequence of points 𝑏𝑗 would look like this:  

𝑏𝑗
𝑙 , 𝑙 = 1, 2, …, 

where 𝑙 – iteration number. 

In accordance with the definitions of the necessary and sufficient criteria for smoothness, it 

is possible to determine the necessary and sufficient conditions for completing the 

iterations. The necessary condition for completing the iterations will be the fulfillment of 

the necessary smoothness criteria without correction of the ordinates at all points. 𝑏𝑗
𝑙: 

𝑈2(𝑏𝑗
𝑙) ≤ 0, 𝑈3(𝑎, 𝑏𝑗

𝑙) > 0, 𝑈4(𝑎, 𝑏𝑗
𝑙) > 0, 

𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

 
  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019(110 1100

-2018
10 10

SPbWOSCE
74 74

9



Accordingly, a sufficient condition for completing the iterations will be the same 

fulfillment of sufficient smoothness criteria at all points.𝑏𝑗
𝑙: 

𝑇1(𝑎, 𝑏𝑗
𝑙) < 0, 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, 

𝑇3(𝑎, 𝑏𝑗
𝑙) < 0, 𝑇4(𝑎, 𝑏𝑗

𝑙) < 0, 

𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 
The smoothing algorithm for the contours that have areas with an extended unregulated 

concavity and without restrictions on the deviation from the original coordinates is 

described in [10]. The results of the performed smoothing showed a deviation of the 

ordinate of one of the points from the initial value by a sufficiently large value, ~5%. Large 

deviations from the original coordinates of the profile points may adversely affect the 

aerodynamic properties of the smooth contour. In engineering practice, the tolerance is 

considered to be within 3% of the coordinate value of the original profile. 

Thus, in order to avoid possible deterioration of the aerodynamic properties of the 

smoothing contour, the verification of the condition of keeping the specified deviation from 

the original coordinates is included in the smoothing procedure. For a deviation of 3%, this 

condition is: 

|
𝑦𝑖

𝑘−𝑦𝑖
(0)

𝑦𝑖
(0) | ≤ 0.03 ,        (21) 

where 𝑦𝑖
(0)

 – original ordinate value of the 𝑖–th point of smoothing contour, 𝑦𝑖
𝑘 – ordinate 

value of the 𝑖–th point on the 𝑘–th iteration of the smoothing procedure. 

If criteria of smoothness are not met on the segment [𝑎, 𝑏𝑗
𝑙], achieving the negativity of the 

second derivative of the curve describing the bypass at the point 𝑏𝑗
𝑙 = {𝑥𝑖 , 𝑦𝑖} is possible in 

two ways: 

1. By increasing the yi by step size 𝑡; 

2. By decreasing the ordinate of the point through which any of the branches of the 

square parabola passes through the points 𝑖 − 1, 𝑖, 𝑖 + 1, eg 𝑦𝑖−1, by step size 𝑡 (Fig. 6). 

 

Fig. 6. Decrease of the point ordinate by step size t 

As long as condition (21) is fulfilled, if the smoothness criteria are not met, the ordinate of 

the point 𝑏𝑗
𝑙 is increased: 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 + 𝑡. 
 

If this condition is no longer satisfied, the ordinate of the point 𝑏𝑗
𝑙 is returned to the 

previous value: 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 − 𝑡, 
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and the smoothing algorithm changes: if the smoothness criteria are not met, the ordinate 

𝑦𝑖−1 is decreased: 

𝑦𝑖−1
𝑘+1 = 𝑦𝑖−1

𝑘 − 𝑡, 
to the value at which they will be executed. 

Thus, to smooth the section "A" of the bypass under consideration with the specified 

deviation from the original profile, the authors developed an algorithm for smoothing the 

bypass section with a long unregulated concavity with a given restriction of deviation from 

the original coordinates. 

A. Algorithm for smoothing the bypass section with an extended 
unregulated concavity with a given restriction of deviations 
from the original coordinates 

1. As a point α, select any node with the index m, lying in the forward part of the 

bypass on the section that does not require smoothing, such as: 𝑎 =  {𝑥𝑚, 𝑦𝑚}, 0 < 𝑚 < 𝑛,

𝑆𝐼𝐼(𝑥𝑚) ≪ 0. 

Assume: 

𝑥𝑎 = 𝑥𝑚, 𝑆(𝑥𝑎) = 𝑦𝑚. 
2. By coordinates of the points 𝑚 − 1, 𝑚, 𝑚 + 1, calculate coefficients 𝑘2𝑚

 and 𝑘1𝑚
 of 

the parabola passing through them: 

𝑘2𝑚
=

𝑦𝑚+1 −
𝑥𝑚+1(𝑦𝑚−𝑦𝑚−1)+𝑥𝑚𝑦𝑚−1−𝑥𝑚−1𝑦𝑚

𝑥𝑚−𝑥𝑚−1

𝑥𝑚+1(𝑥𝑚+1 − 𝑥𝑚−1 − 𝑥𝑚) + 𝑥𝑚−1𝑥𝑚
, 

𝑘1𝑚
=

𝑦𝑚 − 𝑦𝑚−1

𝑥𝑚 − 𝑥𝑚−1
− 𝑘2𝑚

(𝑥𝑚−1 + 𝑥𝑚). 

3. Determine the values of the first and second derivatives of the approximating function 

at the point 𝑚: 

𝑆𝐼(𝑥𝑎) = 𝑌𝐼(𝑥𝑚) = 2𝑘2𝑚
𝑥𝑖 + 𝑘1𝑚

, 

𝑆𝐼𝐼(𝑥𝑎) = 𝑌𝐼𝐼(𝑥𝑚) = 2𝑘2𝑚
. 

4. Set t - step of correction of the ordinate value of a point 𝑏. 

5. Assume 𝑙 = 1. 

6. Assume 𝑗 = 1. 

7. Define point 𝑏𝑗
𝑙: 

𝑏𝑗
𝑙 = {𝑥𝑖 , 𝑦𝑖};   𝑖 = 𝑛 − 1, 𝑛 − 2, … , 𝑚 + 1;   𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

Assume: 

𝑥
𝑏𝑗

𝑙 = 𝑥𝑖 , 𝑆 (𝑥
𝑏𝑗

𝑙 ) = 𝑦𝑖 . 

8. By coordinates of the points 𝑖 − 1, 𝑖, 𝑖 + 1, calculate coefficient 𝑘2 and 𝑘1 of the 

parabola passing through them: 

𝑘2𝑖
=

𝑦𝑖+1 −
𝑥𝑖+1(𝑦𝑖−𝑦𝑖−1)+𝑥𝑖𝑦𝑖−1−𝑥𝑖−1𝑦𝑖

𝑥𝑖−𝑥𝑖−1

𝑥𝑖+1(𝑥𝑖+1 − 𝑥𝑖−1 − 𝑥𝑖) + 𝑥𝑖−1𝑥𝑖
, 

𝑘1𝑖
=

𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1
− 𝑘2𝑖

(𝑥𝑖−1 + 𝑥𝑖). 

9. Determine the values of the first and second derivatives of the approximating function 

at the point 𝑖: 

𝑆𝐼 (𝑥
𝑏𝑗

𝑙 ) = 𝑌𝐼(𝑥𝑖) = 2𝑘2𝑖
𝑥𝑖 + 𝑘1𝑖

, 

 
  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019(110 1100

-2018
10 10

SPbWOSCE
74 74

11



𝑆𝐼𝐼 (𝑥
𝑏𝑗

𝑙 ) = 𝑌𝐼𝐼(𝑥𝑖) = 2𝑘2𝑖
. 

10. Perform segment normalization[𝑎, 𝑏𝑗
𝑙]. Convert the boundary conditions to the 

form: 

𝑥𝑎 = 0;  𝑥
𝑏𝑗

𝑙 = 1;   𝑆(0) = 0;   𝑆(1) = 𝑆 (𝑥
𝑏𝑗

𝑙 ) −  𝑆(𝑥𝑎); 

𝑆𝐼(0) = 𝑆′(𝑥𝑎) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎) ;  𝑆𝐼(1) = 𝑆𝐼 (𝑥
𝑏𝑗

𝑙 ) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎) ; 

𝑆𝐼𝐼(0) = 𝑆𝐼𝐼(𝑥𝑎) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎)
2

;   𝑆𝐼𝐼(1) = 𝑆𝐼𝐼 (𝑥
𝑏𝑗

𝑙 ) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎)
2

. 

11. Check the fulfillment of the required criteria for smoothness: 

𝑈1 = 𝑆𝐼𝐼(0) ≤ 0;  𝑈2 = 𝑆𝐼𝐼(1) ≤ 0; 
𝑈3 = 𝑆(1) − 𝑆(0) − 𝑆𝐼(1) > 0; 

𝑈4 = 𝑆𝐼𝐼(0) − 15.93975903(𝑆𝐼(1) − 𝑆𝐼(0)) > 0. 

11.1 When performing all inequalities, go to step 12. 

11.2 If any of the inequalities fails, assume that 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 + 𝑡. 
11.2.1 Check the condition  

|
𝑦𝑖

𝑘+1 − 𝑦𝑖
0

𝑦𝑖
0 | ≤ 0.03. 

11.2.1.1 When the condition is met, go to step 7. 

11.2.1.2 If the condition is not met, assume that 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 − 𝑡 

and go to step 18. 

12 Verify that sufficient smoothness criteria are met: 

𝑇1 = {−4,72𝑆𝐼𝐼(1)+1,95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) + 0,48𝑆𝐼𝐼(0) − 85,03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))}

< 0, 

𝑇2 = {−2𝑆𝐼𝐼(1) + √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0; 

𝑇3 = {−4,72𝑆𝐼𝐼(1) − 1,95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 0,48𝑆𝐼𝐼(0) − 85,03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))}

< 0, 

𝑇4 = {−2𝑆𝐼𝐼(1) − √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0. 

12.1 If inequalities 𝑇1 < 0 and 𝑇2 < 0, or 𝑇3 < 0 and 𝑇4 < 0 are met simultaneously, 

go to step 13. 

12.2 If inequalities 𝑇1 < 0 and 𝑇2 < 0, or 𝑇3 < 0 and 𝑇4 < 0 are not met 

simultaneously, assume that 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 + 𝑡. 
12.2.1 Check the condition 

|
𝑦𝑖

𝑘+1 − 𝑦𝑖
0

𝑦𝑖
0 | ≤ 0.03. 

12.2.1.1 If the condition is met, go to step 7. 

12.2.1.2 If the condition is not met, assume that 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 − 𝑡 

and go to step 18. 

13 Assume that 𝑗 = 𝑗 + 1. 

14 Check the condition 

𝑗 ≤ 𝑛 − (𝑚 + 1). 
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14.1 If the condition is met, go to step 7. 

14.2 If the condition is not met, go to step 15. 

15 Check the necessary condition for completing the iterations - meeting the 

necessary smoothness criteria without correction of the ordinates at all points 𝑏𝑗
𝑙: 

𝑈2(𝑏𝑗
𝑙) ≤ 0, 𝑈3(𝑎, 𝑏𝑗

𝑙) > 0, 𝑈4(𝑎, 𝑏𝑗
𝑙) > 0, 𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

15.1 If the condition is met, go to step 16. 

15.2 If the condition is not met, assume that 

𝑙 = 𝑙 + 1 

and go to step 6. 

16 Check the necessary condition for completing the iterations - meeting the 

sufficient smoothness criteria without correction of the ordinates at all points 𝑏𝑗
𝑙: 

𝑇1(𝑎, 𝑏𝑗
𝑙) < 0, 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, 𝑇3(𝑎, 𝑏𝑗
𝑙) < 0, 𝑇4(𝑎, 𝑏𝑗

𝑙) < 0, 

𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

16.1 If inequalities 𝑇1(𝑎, 𝑏𝑗
𝑙) < 0 and 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, or  𝑇3(𝑎, 𝑏𝑗
𝑙) < 0 and 

𝑇4(𝑎, 𝑏𝑗
𝑙) < 0 are not met simultaneously for any value of 𝑗, assume that 

𝑙 = 𝑙 + 1 

and go to step 6. 

16.2 If inequalities 𝑇1(𝑎, 𝑏𝑗
𝑙) < 0 and 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, or 𝑇3(𝑎, 𝑏𝑗
𝑙) < 0 and 

𝑇4(𝑎, 𝑏𝑗
𝑙) < 0 are met simultaneously for all values of 𝑗, the calculation is over. 

17 Assume that 𝑗 = 1. 

18 Determine the point 𝑏𝑗
𝑙: 

𝑏𝑗
𝑙 = {𝑥𝑖 , 𝑦𝑖};   𝑖 = 𝑛 − 1, 𝑛 − 2, … , 𝑚 + 1;   𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

Assume that: 

𝑥
𝑏𝑗

𝑙 = 𝑥𝑖 , 𝑆 (𝑥
𝑏𝑗

𝑙 ) = 𝑦𝑖 . 

19 By coordinates of points 𝑖 − 1, 𝑖, 𝑖 + 1, calculate coefficients 𝑘2 and 𝑘1 of the 

parabola passing through them: 

𝑘2𝑖
=

𝑦𝑖+1 −
𝑥𝑖+1(𝑦𝑖−𝑦𝑖−1)+𝑥𝑖𝑦𝑖−1−𝑥𝑖−1𝑦𝑖

𝑥𝑖−𝑥𝑖−1

𝑥𝑖+1(𝑥𝑖+1 − 𝑥𝑖−1 − 𝑥𝑖) + 𝑥𝑖−1𝑥𝑖
, 

𝑘1𝑖
=

𝑦𝑖 − 𝑦𝑖−1

𝑥𝑖 − 𝑥𝑖−1
− 𝑘2𝑖

(𝑥𝑖−1 + 𝑥𝑖). 

20 Determine the values of the first and second derivatives of the approximating 

function at the point 𝑖: 

𝑆𝐼 (𝑥
𝑏𝑗

𝑙 ) = 𝑌𝐼(𝑥𝑖) = 2𝑘2𝑖
𝑥𝑖 + 𝑘1𝑖

, 

𝑆𝐼𝐼 (𝑥
𝑏𝑗

𝑙 ) = 𝑌𝐼𝐼(𝑥𝑖) = 2𝑘2𝑖
. 

21 Perform rationing of the segment [𝑎, 𝑏𝑗
𝑙]. Convert boundary conditions to the 

following form: 

𝑥𝑎 = 0;  𝑥
𝑏𝑗

𝑙 = 1;   𝑆(0) = 0;   𝑆(1) = 𝑆 (𝑥
𝑏𝑗

𝑙 ) −  𝑆(𝑥𝑎); 

𝑆𝐼(0) = 𝑆′(𝑥𝑎) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎) ;  𝑆𝐼(1) = 𝑆𝐼 (𝑥
𝑏𝑗

𝑙 ) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎) ; 

𝑆𝐼𝐼(0) = 𝑆𝐼𝐼(𝑥𝑎) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎)
2

;   𝑆𝐼𝐼(1) = 𝑆𝐼𝐼 (𝑥
𝑏𝑗

𝑙 ) (𝑥
𝑏𝑗

𝑙 − 𝑥𝑎)
2

. 

22 Verify that the required smoothness criteria are met: 

 
  , 0 2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /2019(110 1100

-2018
10 10

SPbWOSCE
74 74

13



𝑈1 = 𝑆𝐼𝐼(0) ≤ 0;  𝑈2 = 𝑆𝐼𝐼(1) ≤ 0; 
𝑈3 = 𝑆(1) − 𝑆(0) − 𝑆𝐼(1) > 0; 

𝑈4 = 𝑆𝐼𝐼(0) − 15,93975903(𝑆𝐼(1) − 𝑆𝐼(0)) > 0. 

22.1 If all inequalities are met, go to step 23. 

22.2 If any of inequalities are not met, assume that 

𝑦𝑖−1
𝑘+1 = 𝑦𝑖−1

𝑘 − 𝑡 

and go to step 18. 

23 Verify that sufficient smoothness criteria are met: 

𝑇1 = {−4.72𝑆𝐼𝐼(1)+1.95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) + 0.48𝑆𝐼𝐼(0) − 85.03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))}

< 0, 

𝑇2 = {−2𝑆𝐼𝐼(1) + √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0; 

𝑇3 = {−4.72𝑆𝐼𝐼(1) − 1.95√𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 0.48𝑆𝐼𝐼(0) − 85.03(𝑆(1) − 𝑆(0) − 𝑆𝐼(1))}

< 0, 

𝑇4 = {−2𝑆𝐼𝐼(1) − √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0. 

𝑇4 = {−2𝑆𝐼𝐼(1) − √𝑆𝐼𝐼(0)𝑆𝐼𝐼(1) − 2𝑆𝐼𝐼(0) + 30(𝑆𝐼(1) − 𝑆𝐼(0))} < 0. 

23.1 If inequalities 𝑇1 < 0 and 𝑇2 < 0, or 𝑇3 < 0 and 𝑇4 < 0 are met simultaneously, 

go to step 25. 

23.2 If inequalities 𝑇1 < 0 and 𝑇2 < 0, or 𝑇3 < 0 and 𝑇4 < 0 are not met 

simultaneously, assume that 

𝑦𝑖
𝑘+1 = 𝑦𝑖

𝑘 − 𝑡 

and go to step 18. 

24 Assume that 𝑗 = 𝑗 + 1. 

25 Check the condition 

𝑗 ≤ 𝑛 − (𝑚 + 1). 
25.1 If the condition is met, go to step 18. 

25.2 If the condition is not met, go to step 26. 

26 Check the necessary condition for completing the iterations - meeting the 

necessary smoothness criteria without correction of the ordinates at all points 𝑏𝑗
𝑙: 

𝑈2(𝑏𝑗
𝑙) ≤ 0, 𝑈3(𝑎, 𝑏𝑗

𝑙) > 0, 𝑈4(𝑎, 𝑏𝑗
𝑙) > 0, 𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

26.1 If the condition is met, go to step 27. 

26.2 If the condition is not met, assume that 

𝑙 = 𝑙 + 1 

and go to step 17. 

27. Check that the condition for completing the iterations is sufficient — satisfying 

sufficient smoothness criteria without correcting the ordinates at all points 𝑏𝑗
𝑙: 

𝑇1(𝑎, 𝑏𝑗
𝑙) < 0, 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, 𝑇3(𝑎, 𝑏𝑗
𝑙) < 0, 𝑇4(𝑎, 𝑏𝑗

𝑙) < 0, 

𝑗 = 1, 2, … , 𝑛 − (𝑚 + 1). 

27.1 If inequalities𝑇1(𝑎, 𝑏𝑗
𝑙) < 0 and 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, or 𝑇3(𝑎, 𝑏𝑗
𝑙) < 0 and 𝑇4(𝑎, 𝑏𝑗

𝑙) < 0 are 

not met simultaneously for any value of 𝑗, assume that 

𝑙 = 𝑙 + 1 

and go to step 17. 

27.2  If inequalities 𝑇1(𝑎, 𝑏𝑗
𝑙) < 0 and 𝑇2(𝑎, 𝑏𝑗

𝑙) < 0, or 𝑇3(𝑎, 𝑏𝑗
𝑙) < 0 and 𝑇4(𝑎, 𝑏𝑗

𝑙) <

0 are met simultaneously for all values of 𝑗, the calculation is over. 
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B. Smoothing section "A" according to the developed algorithm 
 

Table 2 shows the coordinates of the circumference points smoothed by the developed 

algorithm, as well as the values of the first and second derivatives of the approximating 

function at these points. Fig. 7 shows the outline and a graph of its curvature obtained by 

means of a geometric modeling system. The deviations of the coordinates of the smoothed 

contour from the source are given in Table 3. 

Table 2. Coordinates of the points 

i Xi Yi SI SII 

11 295 85.59     

12 354 91.14 0.086497 -0.0002566 

13 472 99.56 0.056737 -0.0002478 

14 590 104.53 0.023898 -0.0003088 

15 708 105.2 0.002331 -5.674x10-5 

16 826 105.08 -0.01479 -0.0002334 

17 944 101.71 -0.03716 -0.0001458 

18 1062 96.31 -0.05936 -0.0002305 

19 1180 87.7 -0.07305 -1.436x10-6 

20 1298 79.07 -0.07322 -1.436x10-6 

21 1416 70.42 -0.07339 -1.436x10-6 

22 1534 61.75 -0.07356 -1.436x10-6 

23 1652 53.06 -0.07373 -1.436x10-6 

24 1770 44.35 -0.0739 -1.436x10-6 

25 1888 35.62 -0.07407 -1.436x10-6 

26 2006 26.87 -0.07424 -1.436x10-6 

27 2124 18.1 -0.07441 -1.436x10-6 

28 2242 9.31 -0.07458 -1.436x10-6 

29 2360 0.5     

Table 3. The deviation of the coordinates of the smoothed contour 

𝑖 𝑥𝑖 𝑦𝑖
(0)

 𝑦𝑖 ∆𝑦𝑎𝑏𝑠 ∆𝑦𝑜 

11 295 85.59 85.59 0 0.00% 

12 354 91.14 91.14 0 0.00% 

13 472 99.56 99.56 0 0.00% 

14 590 104.53 104.53 0 0.00% 

15 708 105.2 105.2 0 0.00% 

16 826 105.08 105.08 0 0.00% 

17 944 101.71 101.71 0 0.00% 

18 1062 96.78 96.31 -0.47 -0.49% 

19 1180 88.98 87.7 -1.28 -1.44% 

20 1298 80.71 79.07 -1.64 -2.03% 

21 1416 71.98 70.42 -1.56 -2.17% 

22 1534 63.12 61.75 -1.37 -2.17% 

23 1652 54.2 53.06 -1.14 -2.10% 

24 1770 45.21 44.35 -0.86 -1.90% 

25 1888 36.19 35.62 -0.57 -1.58% 

26 2006 27.13 26.87 -0.26 -0.96% 

27 2124 18.08 18.1 0.02 0.11% 

28 2242 9.04 9.31 0.27 2.99% 

29 2360 0.5 0.5 0 0.00% 
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Fig. 7. Graph of the curvature of section "A" smoothed by the developed algorithm. 

6 Conclusion 

The application of the developed algorithm allowed eliminating the existing ad hoc 

concavity of the profile. Thus, the conducted studies confirm the validity of the proposed 

criteria for the smoothness of the aerodynamic profile, as well as the effectiveness of the 

application of the developed algorithm for smoothing profiles that have sections with an 

extended unregulated concavity, subject to the specified limits on deviation from the 

original coordinates. 
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