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Abstract. The model-based predictive control (MPC) is considered to be an effective tool for optimal 

control of building heating, ventilation, and air-conditioning (HVAC) systems. MPC need to update the 

operating set points of the local control loops that have a significant influence on the energy performance of 

the system. Performance of MPC relies on the accuracy of the system performance model. There are two 

commonly used modeling approach – conventional or analytical approach that is the way of process 

modeling for some time, but it tends to increase the online computational load as it requires a full 

mathematical description of the real system. Furthermore, such techniques rely on different simplifying 

assumptions that limit the accuracy of the performance model. A second commonly used technique is the 

data-driven approach. The neural network (NN) is the most potent data-driven approach. NN can accurately 

model complex nonlinear systems without even knowing the structure of the system and it also addresses 

the problem of the online computational load since the computational load moves to the offline training 

step. 

In order to set up neural network model-based predictive control (NNMPC), it is important to build a 

reliable energy model of HVAC system that can be used to perform multi-step-ahead prediction of system 

energy performance. In this paper, the energy modeling of the chiller plant is conducted. Data for the 

training of chiller plant energy model is generated from HVAC testbed build in TRNSYS simulation 

environment. The nonlinear-autoregressive neural network with exogenous input (NARX) is used to model 

the energy performance of the chiller plant. The NARX is a powerful method for forecasting of time series 

data and dynamic control problems. NARX model is first trained in the open-loop form with the actual 

output instead of feedback, using back-propagation with the Levenberg-Marquardt method; this model can 

be used to perform only one-step-ahead prediction. Open-loop NARX model is transformed into a closed-

loop form, by connecting the internal feedback, i.e. actual output is replaced by predicted output, to perform 

multi-step-ahead prediction (for predictive control). 

Comparative analysis of developed NARX-based chiller model is carried out with respect to process data 

from testbed, which demonstrated the good accuracy of the NARX-based chiller model.  

Keywords: model-based predictive control, heating, ventilation and air-conditioning, neural network, 

nonlinear-autoregressive model with exogenous input 

1 Introduction 

Building sector consumes about 40% of total energy and 

contributes about 33% of CO2 emissions in the world. 

Heating ventilation and air-conditioning (HVAC) 

systems are responsible for about 50% of the energy 

consumed by the building [1].  It has been well-

demonstrated that deficient HVAC operation and control 

result in poor energy performance. Therefore, it is 

imperative to investigate potential methods to conserve 

energy usage of these systems.  

HVAC systems are one of the most complex and 

challenging systems to control due to subsystem 

interaction, nonlinear dynamics, constrained operations 

and uncertainties due to the inaccuracy of sensors and 

variable load demand [2-5].  

Over the decades, the traditional Proportional-Integral-

Derivative (PID) control has been popular due to its 
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simplicity, flexibility, ability to deliver adequate 

performance for most control problems, etc. However, 

PID has been well-known for its inability in handling 

processes with nonlinear dynamics, processes with delay 

and processes with signal noise. Model predictive 

controller (MPC) has been known as receding horizon 

control [6], after PID could be considered a strong 

candidate for HVAC control because of slow-moving 

dynamic control and it possesses the capability to handle 

uncertainties and constraints in a systematic manner. 

MPC integrates system model for predictive control 

rather than corrective control. It is well suited to slow-

moving systems; use of cost function and optimization 

algorithm for optimal control, integration of energy 

conservation scheme in controller synthesis; and has the 

ability to cope up with a wide range of operation 

conditions [7,8].  

Performance of MPC is highly dependent on the 

accuracy system model. Therefore, synthesis of an 

accurate system model is essential for achieving 

reliability, optimal operation of HVAC systems. There 

are two commonly used modeling schemes (i) 

conventional or analytical approach and (ii) data-driven 

or statistical approach. These models rely on the physical 

laws and principles to provide fundamental knowledge 

of the system. In the past, a large number of models has 

been documented. The reference manual HVACSIM + 

building system and equipment’s enlisted 26 dynamic 

models for HVAC components [9]. A thorough review 

of dynamic models for HVAC systems is presented in 

ASHRAE reference guide [10]. These models rely on 

different simplifying assumptions that limit the potency 

of synthesizing an accurate process model. Secondly, 

since these models rely on detail mathematical 

description of the system, therefore, they tend to increase 

the online computational load. It is very important to 

find the right balance between reliable process model 

and computational loading [11]. Computational loading 

increases (for MPC optimization problem) as the first 

principle model becomes more and more complicated.  

A second commonly used modeling scheme is data 

driven or statistical approach. Artificial neural network 

(ANN) is the most potent data-driven approach. Without 

even knowing the structure of the system, ANN can 

model complex nonlinear systems which make it a 

promising alternative for conventional approaches. ANN 

addresses the problem of computational loading as it 

requires comparatively less computational effort. It was 

also suggested by Afram A. et. al. [12] to investigate 

nonlinear modeling schemes such as ANN with MPC. 

The nonlinear-autoregressive neural network with 

exogenous input (NARX) is a powerful method for 

modeling time series data [13,14], can be used to model 

the HVAC systems energy performance. This paper 

presents the energy modeling of the chiller plant with the 

NARX model.  

This study is organized as follows: Section 2 presents the 

identification of chiller plant energy model using the 

NARX model. Section 3 presents the performance of 

developed NARX energy model with respect to process 

data from the test bed. The conclusion is presented in 

Section 4. 

2 Identification using NARX model 

The nonlinear autoregressive network with exogenous 

inputs (NARX) is a recurrent dynamic network, useful 

for modeling time-series data. It is based on the linear 

autoregressive exogenous model.  The mathematical 

description of NARX model is 
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       (1) 

where 𝑦(𝑘) and u(𝑘) are model output and input 

respectively, 𝑛𝑦  and 𝑛𝑢 are the respective leg space, 𝑘 

represents the discrete time step, 𝑓 represents the 

nonlinear correlation between 𝑦(𝑘) and u(𝑘). Here the 

present value of 𝑦(𝑘) depends on the past values of 𝑦(𝑘) 

and u(𝑘).  

In this work, the multilayer perceptron network (MLP) is 

selected as internal architecture for the NARX model. 

MLP network consists of several layers of 

interconnected neurons in a feedforward manner. In this 

study, the network architecture consists of one input 

layer, one output layer and one hidden layer as shown in 

Figure 1.  

1W 2W1f 2f 

1b 2b

Input 

layer Hidden layer Output layer

1n 2nu MLPy

Figure 1. Multilayer perceptron network. 

The output from MLP can be given by 

( )1 1 1n b W u= +                               (2) 

( )( )2 1 2 1 1n b W f n= +                           (3) 

( )2 2MLPy f n=                               (4) 

where 𝑢 represents input values, 𝑦𝑀𝐿𝑃  represents output 

values, 𝑊 represents synaptic weights connecting layers, 

𝑏1 and 𝑏2 represent bias added to the hidden layer and 

output layer respectively and 𝑓1 and 𝑓2 represent the 

activation function for hidden layer and output layer 

respectively. In this study, hyperbolic tangent sigmoid 

(tansig) function [15] is used as nonlinear activation 

function  

( ),tansig 2
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1
n n n

f n
e−

= −
+

                         (4) 

The training of feedforward network is done in open-

loop form as shown in Figure 2, since the actual past 

output is available while training.  The Eq (1) is 

implemented as delay line (DL) to provide the memory 

element to the network and ability to capture the 

dynamics of the nonlinear system. The back-propagation 

with the Levenberg-Marquardt method is used to train 

the network since it has proven to be more efficient as 

compared to gradient-based methods [16].  
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Figure 2. Open-loop form. 

This open-loop NARX model can only provide a one-

step-ahead prediction. Since multi-step-ahead prediction 

is required for the implementation of neural network 

model-based predictive control. The open-loop NARX 

model is transformed into closed-loop form, by 

connecting the internal feedback, i.e. actual past output 

is replaced by past predicted output from the model, to 

perform multi-step-ahead prediction.  
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Figure 3. Closed-loop form. 

3 Case study 

A dynamic simulation testbed of the HVAC system was 

constructed in the TRNSYS simulation environment. 

The HVAC system used for this study consists of one 

condenser water loop, one chilled water loop, and one air 

loop. Data from this testbed was used for the training of 

NARX model within open loop form. The condenser 

water return temperature, chilled water supply 

temperature, and cooling load demand were presented as 

input for the training, while chiller power consumption 

was used as a target output. The network considered here 

had three layers: one input layer, one output layer, and 

one hidden layer. The hidden layer consists of five 

neurons and the output layer consists of one neuron. 

Mean-square-error (MSE) was considered as a cost 

function in the training process. The training was done 

with 80% of the data, while 20% of the data was used for 

validation to avoid overfitting. The trained NARX model 

was tested in the closed-loop form to judge the multi-

step-ahead prediction performance. Comparison of 

prediction accuracy between proposed NARX model and 

conventional physical model [17] was carried out based 

on mean square error.  

3.1 Performance analysis 

A comparison between the actual power consumption of 

the chiller plant and the predicted power consumption 

from the chiller physical model is presented in Figure 4a, 

where, red lines indicate 95% performance bounds. This 

model provides reasonable performance. However, there 

is a slight model mismatch during high load period. On 

the other hand, NARX-based chiller model provided 

improved performance. Figure 4b, present the prediction 

performance of the NARX model. A good agreement 

can be observed between the actual and predicted 

operational data points, over the entire range.  

 
(a) 

 
(b) 

Figure 4. Prediction performance. 

The MSE between the actual power and predicted chiller 

power consumption was 174.7254 and 24.7576 for 

physical and NARX model, respectively. Thus, the 

proposed NARX model demonstrates about 85% 

improvement in accuracy as compared to the physical 

model. The error distribution for both models is 

presented in Figure 5, which shows that the NARX 

model produces error centered at zero, while a bias is 

evident for the physical model.  
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Figure 5. Error distribution. 

4 Conclusion 

This study presented a new dynamic model for chiller 

plant i.e. is capable of performing multi-step-ahead 

prediction. The nonlinear-autoregressive neural network 

with exogenous input (NARX) model was utilized in this 

study. The NARX model was trained in open-loop form 

and then transformed to closed-loop form to perform 

multi-step-ahead prediction. The case study was carried 

out to analyze the performance of NARX-based chiller 

model. Overall, the proposed NARX model was able to 

provide 85% improvement in accuracy as compared to 

the conventional physical model. In the future work, 

energy modeling of other subsystems of the HVAC 

system will be carried out using the same methodology 

and a supervisory model-based predictive control 

approach will be synthesized that will ensure energy 

efficient operation of HVAC systems. 
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