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Abstract. The building sector plays a remarkable role in decreasing of the overall global CO2 

emissions since as much as 30% from the total global CO2 emission are generated in buildings. 
Demand response provides one possibility to tackle the problem. It can be used to decrease CO2 
emissions in entire energy system in addition to providing energy cost savings for building owners 
and energy companies. In this study, the demand response potential was estimated in an 
educational office building that was heated by district heating. The potential was defined in respect 
of energy cost savings, energy flexibility and thermal comfort. Model predictive control was 
developed, which utilized the dynamic hourly district heating prices. The MPC algorithm written in 
the Matlab software, predicted the future heating demand while the optimization algorithm NSGA-II 
minimized the heating energy cost, maximized the energy flexibility and maintained acceptable 
thermal comfort by changing the space heating temperature setpoints. The operation of the MPC 
algorithm was tested in the IDA ICE 4.8 simulation software. As a result, the annual district heating 
energy costs could be reduced by 4.2% compared to the reference case with constant space 
heating temperature setpoint of 21 °C. The maximum flexibility factor attained was 14%. Acceptable 
level of thermal comfort was maintained throughout the simulation time.

1 Introduction  

Demand response constructs a group of methods where 

the end-user’s energy load is modified to decrease the 

aggregated overall CO2 emissions of the energy 

production and to enhance the efficiency of the whole 

energy system. The end-users load may be shifted from 

expensive peak load periods to cheaper off-peak periods, 

the peak load may be cut, or extra load may be induced to 

off-peak periods. As a result, the aggregated load in the 

energy system will stabilize and the demand for the fossil-

fuel intensive peak-power plants will decrease.  

There exists two type of pricing models in demand 

response: price-based and intensive-based models. This 

study focused in the price-based model where the 

building’s load was modified according to the dynamic 

district heating price. 

From the building owner’s point of view, the 

objective in demand response is to decrease the annual 

energy costs by maintaining indoor environmental quality 

that supports the building’s usage. Several studies have 

shown that the decreased level of IEQ decreases the 

occupant’s productivity [1-2] and it may also cause health 

hazards [3] which both would cancel out the attained 

energy cost savings. Therefore, the DR should be 

controlled so that the IEQ would always be maintained at 

acceptable level.  

The objective of this study was to define the 

potential of DR in an educational office building in the 

perspective of energy cost savings, energy flexibility and 

thermal comfort. The flexibility factor introduced by Le 

Dreau and Heiselberg [4] was used to depict how well the 

DR shifts the load from expensive periods to cheaper 

energy cost periods.  

Earlier demand response studies have 

predominantly dealt with the electricity loads while the 

DR of district heating has been studied much less. For this 

reason, in this study the DR of district heating is examined 

by modifying the space heating load in the studied case 

building. The space heating was chosen as the modified 

load because the study by Martin [5] showed that it 

possesses the greatest potential among the building’s 

HVAC heating loads. 

2 Methodology 

2.1 MPC algorithm 

A model predictive algorithm (MPC) was developed in 

this study to implement the DR of space heating. The 

process chart in Figure 1 presents the idea of DR with the 

MPC algorithm.  
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Fig. 1. Process chart of the MPC algorithm. 

 

First the input data including the weather forecast, 

dynamic district heating price and internal gain forecast 

was imported to the MPC algorithm. The MPC algorithm 

written in Matlab composed of the calibrated physical 

building model and an optimization algorithm. The 

optimization algorithm used the physical building model 

in finding the most optimal space heating temperature 

setpoints over the predicted time spam of either 12 or 24 

hours. The optimal setpoints were then exported to IDA 

ICE simulation software where the efficiency of the MPC 

algorithm was tested.  

In addition, a decentralized feedback control was 

added to IDA to prevent overheating of spaces. The 

feedback control replaced the optimized space heating 

setpoint by the normal setpoint of 21 °C if the room air 

temperature in any room exceeded 24 °C.  

The MPC algorithm was run throughout the year to get 

the annual space heating temperature setpoints. Therefore, 

the final simulation results depict the annual DR potential 

in respect of district heating costs, thermal comfort level 

and energy flexibility. 

2.2. Case building  

The case building Otakaari 4, an educational office 

building constructed in 1960s, located in the Aalto 

University campus area in Espoo, Finland. This building 

was chosen because it resembles typical office building in 

Finland of that era in respect of structures and HVAC 

technology. The building provided facilities for the 

University faculty and students: lecture rooms, offices, 

student restaurant and alleys. However, in this study only 

the 4th floor of the office wing of the building was 

investigated. Layout of the 4th floor is shown in Figure 2. 

The case floor had heated net floor area of 586 m2 and 

envelope area of 947 m2. 

Fig. 2. Layout of the case floor. 

The building envelope and all the bearing structures 

were built of reinforced concrete which resulted in 

relatively high building mass heat capacity. With the 

moderate insulation level, this building offered great 

possibilities for DR implementation [4]. In the latest 

renovation, the windows were renewed, and the 

ventilation system was also renovated. Table 1 presents 

the building structure properties and the average 

ventilation air flow rate.  

Tab. 1. Properties of the case building. 

Structures 
U-value 

(W/m2,K) 

g-value   

External wall 0.38   

Roof 0.3   

Window, South-West 1.1  0.38 

Window, North-West and North-East 1.1  0.59 

Window frames, All 2.0   

Air thightness ACH  

4th floor 1.6  

Ventilation qv (l/s,m2) Schedule 

4th floor average 2 24/7 

The space heating was supplied by hydronic radiators 

manufactured by Purmo. Space heating, AHU heating and 

the DWH were all heated by the district heating. One 

chiller offered space cooling in one corridor of the case 

floor, but it was neglected since the DR potential of space 

heating was studied. The internal gains were evaluated 

based on the number of work stations in each office room. 

Occupancy rate of 40% was assumed. The internal gains 

and the schedules are shown in Table 2.  
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Tab. 2. Internal gains and schedules. 

Internal heat 

gain 

Value Schedule 

hours 

Lighting 7.5 W/m2 08 - 16 

Equipment 50 W/occupant 08 - 16 

Occupancy 100% 40%   

Total number 

of occupants 

40  16   08 - 16 

2.3 Calibrated building capacity model  

Simple two capacity RC-model was used to predict the 

heating demand in the MPC algorithm (Figure 3). The 

two-capacity RC-model composes of two temperature 

node points, first one placed in the room air and the 

another one in the lumped building mass point. The heat 

transfer is described by the conductances and the heat 

gains from occupants, solar, equipment, lighting and 

space heating units. The heating demand to reach specific 

indoor air temperature setpoint could be solved from the 

heat balance equations for both air and mass node points.

 Two rooms from the studied floor were modelled in 

the RC-model to get solar radiation values from the 

opposite facades of the building (marked in Figure 2). The 

modelling was limited to two rooms since the modelling 

of numerous rooms would have taken more time without 

giving remarkable benefits in the accuracy of the end-

results of the DR potential. The conductances and 

capacitances were defined by calibrating the RC-model 

against the more sophisticated and validated IDA ICE 

room model. The static and dynamic calibration steps 

resulted in well-performing and accurate RC-model as 

can be seen from Figure 4. The air temperature in the RC-

model matched accurately with the one in IDA ICE 

model. The calibrated parameters are shown in Table 3. 

Fig. 3. Schematic of the two capacity RC-model. Symbols are 

defined in table below. 

Symbol Description Unit 

Cm Heat capacitance of the mass node point J/K 

Ca Heat capacitance of the air node point J/K 

Hae Combined conductance of the windows 

and leakage air 

W/K 

Hms Conductance between mass node and 

outdoor air node point 

W/K 

Ham Conductance between mass node and 

indoor air node point 

W/K 

Hav Heat capacity flow through ventilation W/K 

Te Exterior/outdoor temperature °C 

or K 

Tm Mass temperature node point °C 

or K 

Ta Air temperature node point °C 

or K 

Tv Supply air temperature node point °C 

or K 

Øℎ𝑐   Zone heating/(cooling) power W 

Ø𝑐   Convective heat loads W 

Ø𝑟   Radiative heat loads W 

 

Fig. 4. Indoor air temperature in the calibrated RC-model (Tai) 

and IDA ICE calibration reference model (Tari). 

Tab. 3. RC-model parameters after calibration. 

Hams Hav Hae Hms Ham Ca Cm 

W/K W/K W/K W/K W/K kJ/K kJ/K 

10.4 51.8 7.7 10.7 372.2 336.3 19290 

2.3 Optimization 

Model predictive control algorithm involved an NSGA -

II optimization algorithm which was used to find out the 

optimal space heating setpoint trajectories for the 

upcoming hours. The NSGA-II algorithm was chosen 

because it belongs to genetic algorithms which can find 

multiple solutions with one optimization round making 

the optimization efficient compared to preference-based 

optimization methods [6]. The original optimization code 

was developed by Tutum [7].     

 Optimization dealt with three optimization functions. 

Optimization tried to minimize the total heating energy 

cost (F1), reach the maximum heating energy flexibility 

(F2) and to minimize the thermal discomfort described by 

the deviation of the air temperature of the RC-model to 

the preferred air temperature set according to the Finnish 

indoor air classification level S2 (F3) [8]. 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110309)
201

E3S 111
CLIMA 9

306 677 

3



 

 

 (2) 

      (3) 

     (4) 

where    

       

x    space heating temperature setpoints 

t    time instance 

n    length of the prediction horizon 

Ta    air temperature 

Tref  reference air temperature. 

 The optimization variable (x) was restricted to get 

values between [20-24.5] °C to maintain acceptable 

thermal comfort level. During the summertime when the 

24 h average outdoor air temperature exceeded 0 °C the 

acceptable range was changed to [20-21] °C preventing 

overheating. The length of the predicted heating demand 

(n) was set to either 12 or 24 h, which also defined the 

length of the optimization variable vector x.    

 In addition to specifying the acceptable range for the 

space heating setpoints, the optimization had one 

constraint for the heating power. The heating power was 

not allowed to exceed the maximum outdoor air 

dependant heating power (physical restriction).  

2.4 Input data 

The input data involved the weather/climate data and the 

dynamic DH prices. The TRY weather data was chosen 

since it resembles average annual weather in the Finnish 

climate. Thus, also the results of this study resemble the 

DR potential in the average weather conditions [9]. The 

DH marginal cost data utilized in this study was generated 

by Rinne [10]. The cost data was generated using the same 

weather data which is mandatory since the DH costs are 

weather dependent.  

2.5 Simulated cases 

The studied simulation cases composed of Reference 

cases R, optimization cases O and the parameter analysis 

cases C. The cases are shown in Table 4.     

 The reference cases (without DR) formed a 

benchmark for which the DR cases could be compared. 

The temperature setpoint was constant throughout the 

year, either 21 °C (R1), which is a normal temperature 

target value in Finnish building code or 20 °C (R2) which 

resembles a case where the heat is conserved. In the 

optimization cases the objective functions and the length 

of the prediction horizon was changed. In the parameter 

analysis different temperature setpoint ranges were 

studied. 

Tab. 4. Studied simulation cases (R=reference cases, 

O=optimization cases, C=parameter analysis cases). 

Case 

 

Optimization 

objectives 

Prediction 

horizon, [h] 

Temperature 

setpoint range, [°C] 

R1 - - Cons. 21 

R2 - - Cons. 20 

O1.2 MIN(F1) 12 [20-23] 

O2.2 MAX(F2) 12 [20-23] 

O3.2 
MIN(F1) 

MIN(F3) 
12 [20-23] 

O4.2 
MAX(F2) 

MIN (F3) 
12 [20-23] 

O2.3 MAX(F2) 24 [20-23] 

O3.3 
MIN(F1) 

MIN(F3) 
24 [20-23] 

O4.3 
MAX(F2) 

MIN (F3) 
24 [20-23] 

C1.2 
MAX(F2) 
MIN (F3) 

24 [20-24.5] 

C2.2 
MAX(F2) 

MIN (F3) 
24 [20-21] 

3 Results 

The results from the MPC algorithm implemented DR 

cases are analysed in respect of energy cost savings, 

energy flexibility and thermal comfort. The annual 

heating costs and flexibility factors are presented in Table 

5. Heating energy consumption and costs are given per 

heated net floor area allocated form and the relative 

savings are calculated in reference to case R1.   

 The results show that the highest energy cost savings 

were obtained from the DR case O1.2. However, the cases 

O3.3 and C2.2 reached almost the same cost savings. The 

cost savings in these DR cases are close to the savings 

given by heat conservation in the reference case R2.   

 The highest flexibility factor of 14% was reached in 

the cases O4.3, C1 and C2 which all had flexibility factor 

as one objective. The flexibility was increased 

considerably compared to the reference cases R1 and R2 

which had FF of roughly 7%.       

 The cost optimized cases and the flexibility optimized 

cases differed in the strategy they used to modify the 

buildings heating load. The cases having cost 

optimization as one objective tried to decrease the energy 

costs by decreasing the heating consumption similarly to 

reference case R2. In comparison, the cases having 

flexibility optimization as one objective, utilized the load 

shifting strategy where the load was shifted from 

expensive periods to cheaper energy cost periods. The 

𝑀𝑖𝑛  𝐹1(𝒙) =  ℎ𝑒𝑎𝑡𝑖𝑛𝑔 𝑝𝑜𝑤𝑒𝑟(𝒙(𝑡)) ∗ 𝐷𝐻 𝑝𝑟𝑖𝑐𝑒(𝑡)

𝑛

𝑡=1

  

𝑀𝑎𝑥 𝐹2 𝒙(𝑡) = 𝑓𝑙𝑒𝑥𝑖𝑏𝑖𝑙𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟  

𝑀𝑖𝑛  𝐹3(𝒙) =   𝑇𝑎 𝒙(𝑡) − 𝑇𝑟𝑒𝑓  𝒙(𝑡)  
2

𝑛

𝑡=1
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difference between these strategies can be seen from the 

cost and energy saving ratios shown in table 5 and from 

the Figure 5 where the heating energy cost is divided 

according to district heating price ranges. 

Tab. 5. Simulation results. 

CASE 
DH 

energy 
Cost 

DH 
energy 

Cost 

Cost 
and 

energ
y 

saving 
ratio 

Flexibility 
factor 

 kWh/m2 €/m2 % % - % 

R1 128.3 8.2 0.0  0.0  0.0 7 

R2 121.2 7.8 -5.5  -4.8  0.9 7 

O1.2 121.4 7.8 -5.4  -4.7  0.9 7 

O2.2 125.3 7.9 -2.3  -3.1  1.3 10 

O3.2 122.3 7.8 -4.7  -4.2  0.9 6 

O4.2 126.2 8.0 -1.6  -2.7  1.6 11 

O2.3 125.7 7.9 -2.0  -4.0  2.0 13 

O3.3 122.5 7.8 -4.5  -4.6  1.0 7 

O4.3 127 7.9 -1.0  -3.0  2.9 14 

C1.2 127.2 8.0 -0.9  -2.5  3.0 13 

C2.2 126 7.8 -1.8  -4.3  2.4 14 

 

Fig. 5. Heating energy cost divided to district heating price 

ranges. 

The cases where the thermal comfort acted as one 

objective resulted in slightly lower heating cost savings 

compared to cases optimized only by costs or FF. The 

length of time for which the heating demand was 

predicted (length of the prediction horizon) had a 

significant effect on the given results. The longer 

prediction time increased the cost savings and decreased 

the heating energy savings in both cost and flexibility 

optimized cases.            

 The parameter analysis cases (C cases) revealed that 

the heat loading seems not to be feasible in this case 

building. In the case C1.2 the allowed temperature 

setpoint range was [20-24.5] °C while it was [20-21] °C 

in case C2.2. The case C2.2 resulted in higher heating cost 

savings and therefore the heat loading with temperature 

setpoint above 21 °C seems not to be feasible. The reason 

for this might be that the relatively high ventilation air 

flows would flush the heat away before it could be loaded 

to the building mass. Thermal comfort level in the 

simulation cases was analysed by plotting the air 

temperature duration curves of the coldest room in the 

case floor. The duration curves showing cases R1, R2, 

O1.2, O2,2, O3.2 and O4.2 are presented in Figure 6. The 

temperature duration curves show that the air temperature 

did not drop below 20 °C in any of the simulated cases. 

As the 20 °C is regarded as the minimum allowed air 

temperature in the Finnish indoor air classification [8], it 

can be concluded that the acceptable thermal comfort was 

maintained in all of the cases.        

 In addition, Figure 6 shows that the FF optimized 

cases resulted in higher room air temperature than the cost 

optimized cases. Thermal comfort level in these cases 

were also higher (according to tempearture targets in [8]). 

The cases where the thermal comfort was also optimized 

resulted in slightly higher room air temperatures and 

comfort levels. The difference was small because the 

decision between two optimization objectives (either cost 

+ comfort or FF + comfort) was always done so that either 

cost or FF was preferred over the comfort.  

 

Fig. 6. Duration curves of the coldest room of the case floor. 

4 Discussion 

The reliability of the results depended mostly on the 

accuracy of the modelling and the accuracy of the input 

data. The relatively small heating cost savings (~5%) 

obtained with the MPC algorithm may be due to number 

of reasons. One possibility to low cost savings is that the 

relatively high ventilation air flow rates prevented the heat 

loading into the structures and thus the load shifting 

potential was restricted. In other hand the results are 

significantly dependent of the used dynamic DH price 

model. In addition, the developed MPC algorithm should 

be tested in different buildings having different structural 

properties and usage. All in all, the obtained results are in 

close agreement with the results from the earlier DR study 

in the same building by Martin [5]. 
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5 Conclusions 

The MPC algorithm developed in this study was used to 

implement demand response of space heating in an 

educational office building in Finland. It succeeded in 

decreasing the heating energy costs by 5%, improving the 

energy flexibility from 7% to 14% and maintaining 

acceptable thermal comfort throughout the simulation 

time.               

 The different combinations of optimization objectives 

showed that when the heating energy costs were 

minimized as one objective, the MPC algorithm ended up 

to conserve heating load. If the energy flexibility acted as 

one objective the algorithm ended up using the load 

shifting DR strategy.          

 The parameter analysis performed, revealed that heat 

loading with space heating setpoints above 21 °C was not 

economically feasible. This may be due to relatively high 

ventilation air flow rates in the case building. 

This study was part of REINO research project that investigated 

intelligent control strategies in the sustainable building energy 

systems. Authors would like to thank Business Finland for 

funding the study and Granlund Consulting Oy for supporting 

with writing of this conference paper. 
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