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������ Fast simulation tools for the prediction of transient particle transport are critical in designing the 
air distribution indoors to reduce the exposure to indoor particles and associated health risks. This 
investigation proposed a combined fast fluid dynamics (FFD) and Markov chain model for fast predicting 
transient particle transport indoors. The solver for FFD-Markov-chain model was programmed in 
OpenFOAM, an open-source CFD toolbox. This study used a case from the literature to validate the 
developed model and found well agreement between the transient particle concentrations predicted by the 
FFD-Markov-chain model and the experimental data. This investigation further compared the FFD-Markov-
chain model with the CFD-Eulerian model and CFD-Lagrangian model in terms of accuracy and efficiency. 
The accuracy of the FFD-Markov-chain model was similar to that of the other two models. For the studied 
case, the FFD-Markov-chain model was 4.7 times faster than the CFD-Eulerian model, and it was 137.4 
times faster than the CFD-Lagrangian model in predicting the steady-state airflow and transient particle 
transport. Therefore, the FFD-Markov-chain model is able to greatly reduce the computing cost for 
predicting transient particle transport in indoor environments. 
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Exposure to outdoor particles has been linked to various 
adverse health effects, such as lung cancer [1] and 
shortened life expectancy [2]. Particles that originate 
outdoors can enter indoor environments through natural 
ventilation, mechanical ventilation, and infiltration [3]. 
As people spend most of their time indoors [4], their 
exposure to particles of outdoor origin occurs mainly 
indoors [5]. In addition to particles from the outdoor 
environment, there are many indoor particle sources, 
such as cigarette smoking [6], cooking [7], human 
activity [8], and chemical reactions [9]. Furthermore, 
particles exhaled by an infected person can result in the 
transmission of many airborne infectious diseases 
indoors, including influenza [10], tuberculosis [11], 
measles [12], and severe acute respiratory syndrome 
(SARS) [13]. In most cases, the particle concentration 
distribution indoors is non-uniform, and the transport 
process is transient in nature. Therefore, it is crucial to 
correctly predict the transient particle transport in indoor 
environments in order to improve the design of air 
distribution and reduce health risks. 

Computational fluid dynamics (CFD) is among the 
most popular tools for modelling airflow distribution and 
particle transport. Among the numerical methods, fast 
fluid dynamics (FFD) and the Markov chain model can 

accelerate the airflow and transient particle transport 
calculations, respectively. However, the combined 
effects on accuracy and computing cost are unknown. 
Therefore, this study aimed to develop a combined FFD 
and Markov chain model and evaluate the model in 
terms of accuracy and computing cost��
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This study considered the time-dependent Navier-Stokes 
equations for incompressible viscous indoor airflow: 

                                    (1) 

            (2) 

where Ui is the air velocity component in the xi (i=1,2,3) 
direction, t is the time, ν is the effective viscosity, ρ is 
the density, and Fi is the ith component of the body 
forces. A standard incremental pressure-correction 
(SIPC) scheme was applied to solve the Navier-Stokes 
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equations. The SIPC scheme splits Eq. (2) into the 
following two equations: 

        (3) 

                     (4) 

The pressure projection method substitutes Eq. (4) 
into Eq. (1) to produce: 

                           (5) 

The SIPC scheme first solves Eq. (3), which considers 
the advection and diffusion terms implicitly and the 
pressure and source terms explicitly. With the solved 
intermediate velocity, the SIPC scheme then solves Eq. 
(5) to obtain the pressure. Finally, the SIPC makes a 
correction to the air velocity using Eq. (4). 

To predict the transport of energy, the corresponding 
scalar transport equation must be solved: 

                      (6) 

where T is the air temperature, � is the effective thermal 
conductivity, and ST is the energy source. Since Eq. (6) is 
a linear partial differential equation, this study solved it 
them iteratively with implicit schemes. With the solution 
of Eq. (6), FFD adopts the Boussinesq approximation 
[14] to simulate the buoyancy effect in the indoor 
airflow. 

This study used the renormalization group (RNG) k-� 
model to calculate airflow and turbulence, as this model 
has the best overall performance among all Reynolds-
averaged Navier-Stokes (RANS) models for enclosed 
environments [15]. 
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The Markov chain model calculates the number of 
particles in a given cell (represented by the subscript i) at 
the subsequent time step (t+�t) on the basis of the 
Markov chain scheme [16]: 

       (7) 

where Ni(t) represents the number of particles in cell i at 
time t, the subscript nb represents the neighboring cells 
or boundaries, Pi,i is the probability of a particle’s 
staying in cell i in a certain time step �t, and Pnb,i is the 
probability of a particle’s moving from a neighboring 
cell to cell i in a certain time step �t. Here, Pi,i and Pnb,i 
are called transition probabilities. 

On the basis of the particle mass balance equation for 
the cell i, after a certain time step Δt, the probability of a 
particle’s remaining in the current cell can be calculated 
by [16]: 

                     (8) 

If cell j is one of the neighboring cells, the probability of 
a particle’s moving from cell i to cell i in Δt can be 
calculated by: 

                      (9) 

where Qi,nb is the airflow rate from cell i to the 
neighboring cell or boundary nb, which can be expressed 
as the sum of the mean airflow rate Qmean,i,nb and the 
turbulent fluctuating airflow rate Qfluctuating,i,nb. With the 
use of FFD simulation, the mean airflow rate can be 
obtained from the cell face air flux. 

Please note that in Eq. (7), Pnb,i is used instead of Pi,nb. 
Eq. (7) also shows that the Markov chain model does not 
require iterations in each time step, and thus the use of 
this model reduces the computing cost. The particle 
number concentration in cell i at time t can be calculated 
by: 

                                (10) 

where Vi is the volume of the cell i. 
This Markov chain model is effective for particles 

with a diameter smaller than 3 μm, which have 
negligible inertial effects [17]. Furthermore, when there 
is a constant particle source, to reduce the computing 
cost, the superimposition method can used as 
recommended by Gupta et al. [18].  
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Fig. 1. Solution flow chart of the combined FFD and Markov 
chain model. 

Start

Initialize U, T, and P

Solve Eq. (3) for U*

Solve Eq. (5) for P

Solve Eq. (4) for U

Solve Eq. (6) for T

Check if t ≤ 2τ
Yes

Initialize N

Calculate transition probability P
using Eqs. (8) to (9)

Calculate particle number N(t) and
particle concentration C(t) using Eqs. 

(7) and (10), respectively.

End

No

FFD to predict
air distribution 

Markov chain
model to predict
transient particle

transport

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110409)
201

E3S 111

CLIMA 9

 4030 30

2



�

 
This study implemented the FFD solver for air 
distribution and the Markov chain model for particle 
transport in OpenFOAM, an open-source CFD toolbox. 
Figure 1 shows the solution flow chart, where � is the 
room time constant (s). The developed solver first 
conducts FFD simulation for 2� to obtain a steady-state 
airflow, and then it calculates the transition probabilities, 
which are further used to calculate the number of 
particles at each time step. 
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This investigation used a case, transient particle transport 
in an isothermal ventilated chamber, to validate the FFD-
Markov-chain model. Next, the computing cost of the 
FFD-Markov-chain model was compared with the 
traditional CFD-Eulerian and CFD-Lagrangian models. 

In Figure 2, the spatial dimensions of the room were 
4 m in length, 2.1 m in width, and 2.4 m in height. There 
was an inlet (0.3 m × 0.3 m) located 0.3 m below the 
ceiling on the left wall and an outlet (0.3 m × 0.3 m) 
located 0.3 m above the floor on the right wall. Air was 
supplied with velocity magnitude of 0.84 m/s and 
incident angle of 10 degree downward, and turbulence 
intensity of 20%. Particles with a diameter of 1 μm were 
injected into the chamber through the inlet. The 
experiment measured the transient particle 
concentrations at two locations on a vertical line in the z-
directional center-cutting plane and 1 m away from the 
inlet. The measurement locations were 1.8 m (point 1) 
and 0.9 m (point 2) above the floor. 

 

 

Fig. 2. Configuration of the chamber studied by Zhang et al. 
[21]. 

 
The numerical simulation used a grid with 18,009 

hexahedral cells, on the basis of the grid independence 
test by Chen et al. [17]. The time step size for FFD was 
set at 1 s, which was sufficiently fine to capture the flow 
features according to the independence test. The room 
time constant was 135 s. Therefore, the physical flow 

time for FFD calculation was set at 270 s. The time step 
size for the Markov chain model was set at 0.01 s. The 
physical flow time was set at 1,500 s, as all of the 
particles were removed from the room after 1,500 s. The 
influence of particle deposition and resuspension were 
negligible when the particle size was 1 μm [19]. 

Figure 3 compares the numerical results for the 
transient particle concentrations with the experimental 
data. The numerical results obtained with the CFD-
Eulerian and CFD-Lagrangian models [20] are also 
included for comparison. Note that the three sets of 
simulations were performed on the basis of the same 
inlet particle concentrations, as shown in Figure 5 of 
Zhang et al. [21]. The FFD-Markov-chain model 
correctly predicted the strong initial peak and the 
relatively weak and delayed peak in particle 
concentrations at the height of 1.8 and 0.9 m in Figures 
3(a) and 3(b), respectively. The curve predicted by the 
FFD-Markov-chain model agreed well with the 
experimental data, as shown in Figure 3(a). However, as 
displayed in Figure 3(b), the FFD-Markov-chain model 
over-predicted the particle concentration after the peak 
in comparison with the experimental data. Interestingly, 
the over-prediction also occurred for the CFD-Eulerian 
and CFD-Lagrangian models. The FFD-Markov-chain 
model at least achieved similar accuracy to that of the 
other two models. The discrepancies between the 
simulations and experiment may be partially attributed to 
heat generation by the particle counters and the 
associated convective flow. In general, the accuracy of 
the FFD-Markov-chain model was satisfactory. 
 

 
(a) 

 
(b) 
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Fig. 3. Comparison of the numerical results for transient 
particle concentration with the corresponding experimental 
data: (a) y = 1.8 m, (b) y = 0.9 m. 
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The validation cases above have shown that the FFD-
Markov-chain model can predict indoor transient particle 
transport reasonably well, with accuracy similar to that 
of the CFD-Eulerian and CFD-Lagrangian models. This 
section discusses another important factor, the 
computing cost of the FFD-Markov-chain model. Note 
that the calculations were performed using the same 
computer under the same conditions. Figure 6 compares 
the total computing time for the FFD-Markov-chain 
model with the times required by the CFD-Eulerian and 
CFD-Lagrangian models. For the case, the FFD-Markov-
chain model took 3.6 min, while the CFD-Eulerian and 
CFD-Lagrangian models took 20.7 and 501.5 min, 
respectively. Namely, the FFD-Markov-chain model was 
4.7 and 137.4 times faster, respectively, than the CFD-
Eulerian and CFD-Lagrangian models.  

 

�  

Fig. 4. Comparison of the computing time of the FFD-Markov-
chain model with the computing times of the CFD-Eulerian 
and CFD-Lagrangian models. 

 

Table 1. Comparison of computing time for airflow and 
particle transport calculations. 

Case Model 

Computing 
time for 
airflow 
(min) 

Computing 
time for 
particle 
transport 
(min) 

[21] 

FFD-Markov-
chain

0.3 3.3 

CFD-Eulerian 2.2 18.5 
CFD-Lagrangian 2.2 499.4 

 
Table 1 further compares the computing time for the 

airflow and particle transport calculations. For the 
airflow calculations, FFD was 5.9 times faster than CFD 
for the case. For particle transport, the Markov chain 

model was 4.6 times faster than the Eulerian model for 
the case, and 149.7 times faster than the Lagrangian 
model for the case. In terms of absolute contribution to 
computing-time saving, the Markov chain model 
contributed more than FFD, as the transient particle 
transport calculations required more time than the 
airflow calculations. In general, the FFD-Markov-chain 
model significantly reduced the computing cost in 
comparison with the traditional CFD-Eulerian and CFD-
Lagrangian models. 
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There are several limitations of the FFD-Markov-chain 
model, starting with FFD. This study used the RNG k-� 
model in FFD to simulate the turbulence. For simulating 
more complicated flow such as indoor airflow in an 
aircraft cabin or outdoor airflow, large-eddy simulation 
(LES) would be a good choice. However, the integration 
of LES into FFD has not yet been achieved, and its 
performance in terms of accuracy and efficiency is 
unknown. In regard to the Markov chain model, the 
current version is not able to account for particle 
deposition, sedimentation, resuspension, coagulation, 
evaporation, or biological and chemical reaction. If the 
model is to be applied to more complex indoor 
environments, these influencing factors should be 
considered. The implementation of additional functions 
in the Markov chain model would allow it to compete 
with the well-developed Eulerian and Lagrangian 
models. 
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This study developed a combined FFD and Markov 
chain model for predicting transient particle transport in 
indoor environments. The FFD-Markov-chain model 
was implemented in OpenFOAM, an open-source CFD 
toolbox. A case with experimental data from the 
literature was used to validate the model. The accuracy 
and computing cost of the FFD-Markov-chain model 
were evaluated by comparing it with the traditional 
CFD-Eulerian and CFD-Lagrangian models. The FFD-
Markov-chain model can predict transient particle 
transport in indoor environments reasonably well in 
comparison with experimental data. The accuracy of the 
FFD-Markov-chain model was similar to that of the 
traditional CFD-Eulerian and CFD-Lagrangian models. 
The FFD-Markov-chain model was 4.7 times faster than 
the CFD-Eulerian model. The FFD-Markov-chain model 
was 137.4 times faster than the CFD-Lagrangian model. 
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