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Abstract. The computational fluid dynamics (CFD)-based adjoint method can determine design variables 

of an indoor environment according to the optimal design objective, such as minimal predicted mean vote 

(PMV) for thermal comfort. The method calculates the gradient of the objective function over the design 

variables so that the objective function can be minimized along the fastest direction using an optimization 

algorithm. Since the RNG k-ε model is the most popular model used in CFD, the corresponding adjoint 

equations of the turbulence model should be solved during the design process, rather than the “frozen 

turbulence” assumption used in the existing approach. This investigation developed adjoint equations for the 

RNG k-ε turbulence model and applied it to a two-dimensional ventilated cavity. Design processes with the 

adjoint RNG k-ε turbulence model led to a near-zero design function for the cavity case, while that one with 

the RNG k-ε turbulence model did not.  

1 Introduction  

To create a thermally comfortable and healthy indoor 

environment, conventional designs use a trial-and-error 

process [1] that assumes certain thermo-fluid boundary 

conditions, such as air supply inlet size, number, and 

locations, air supply velocity and temperature, etc. An 

appropriate method is then used to estimate the resulting 

distributions of air temperature, velocity, relative 

humidity, and contaminant concentrations. The trial-and-

error process is very time consuming because the 

assumed thermo-fluid boundary conditions may not be 

desirable. Recently, inverse or optimal design processes 

[2] have emerged, such as the CFD-based [3] genetic 

algorithm (GA) method [4], CFD-based proper 

orthogonal decomposition (POD) method [5], CFD-

based artificial neural network (ANN) method [6], and 

CFD-based adjoint method [7]. 

To design a desirable indoor environment, the CFD-

based GA method must calculate a large number of 

samples, and the number of calculations increases 

exponentially with the number of design variables. To 

reduce computing effort, Wei et al. [5] developed a 

CFD-based POD method that can transform the 

nonlinear problem into a linear one and build a cause-

effect mapping relationship between the objective 

function and design variables. Since it is a reduced-order 

method, the accuracy of this method is greatly reduced. 

The CFD-based ANN method can also build the 

mapping relationship between the objective function and 

design variables, in this case by selecting a certain 

number of samples to train the ANN model. With a well-

trained ANN model, the design objective can be 

predicted without CFD calculations. However, the 

accuracy of this method depends on the number of 

samples. In addition, the mapping relationship 

established by either the CFD-based POD method or the 

CFD-based ANN method is applicable only to a specific 

case. For a different case, the relationship would change. 

The CFD-based adjoint method can quickly find the 

optimal design of an indoor environment using an 

optimization algorithm without building a mapping 

relationship for each new problem, although it may 

become trapped in local optima [1]. The CFD-based 

adjoint method is the most efficient and suitable method 

for the inverse design of a thermally comfortable and 

healthy indoor environment.  

The CFD-based adjoint method was developed 

recently for inversely designing an indoor environment 

by solving a set of Navier-Stokes equations and adjoint 

equations, alternatively. The adjoint equations are 

derived from the continuous Navier-Stokes equations [8]. 

Liu and Chen [7] used the CFD-based adjoint method to 

inversely identify the thermo-fluid boundary conditions 

required to achieve the optimal design of ventilation for 

an enclosed environment. Liu et al. [9] then adopted this 

method to improve the thermal comfort level for an 

airline cabin. Zhao et al. [10] also attempted to use the 

CFD-based adjoint method combined with area-

constrained topology and cluster analysis to design a 

thermally comfortable indoor environment. However, 

the results of these studies indicated that this method 

cannot make the objective functions reach the ideal 

values. One reason may be that the objective functions 
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become trapped in local optima. Another reason may be 

that the CFD-based adjoint method, which was used in 

previous studies [7, 9-12], derives only the adjoint 

equations of the Reynolds-averaged Navier-Stokes 

(RANS) equations with the “frozen turbulence” 

assumption. The assumption is to use the turbulent 

viscosity calculated in the forward RANS modeling 

when the adjoint equations are solved. The assumption 

can reduce deriving manually effort [12, 13] by 

neglecting variations in the turbulent variables. However, 

this method can provide only approximate gradients, or 

even incorrect gradients, which may not lead to global 

optima for the design. 

A variant of the method is the discrete adjoint 

method [14], which first discretizes the Navier-Stokes 

equations and then derives the discrete adjoint equations 

from the discrete Navier-Stokes equations. Since the 

discrete adjoint method derives the complete adjoint 

equations that include the adjoint equations for 

calculating turbulent viscosity, it can provide accurate 

gradients [15]. However, it requires a large amount of 

computational memory, which may not be affordable in 

practice. To obtain accurate gradients and reduce 

computational memory, one option is to develop a 

continuous adjoint method without using the “frozen 

turbulence” assumption [16]. 

Since the turbulent viscosity νt in the momentum 

equation can be solved by introducing an appropriate 

turbulence model, some studies have derived the 

complete continuous adjoint equations with an 

appropriate adjoint turbulence model. Zymaris et al. 

proposed a Spalart-Allmaras one-equation adjoint 

turbulence model [17] and a standard k-ε adjoint 

turbulence model [18] to minimize duct pressure losses. 

Papoutsis-Kiachagias [19] developed a low-Reynolds-

number Launder-Sharma k-ε adjoint turbulence model to 

optimize duct shape, with the aim of minimizing viscous 

losses. All these applications have proved that an 

appropriate adjoint turbulence model can provide an 

accurate gradient of the objective function over the 

design variables. However, none of the above turbulence 

models is suitable for inversely designing an indoor 

environment. Chen [20] and Zhang et al. [21] compared 

different turbulence models and found that the RNG k-ε 

turbulence model was the most suitable method for 

solving indoor airflow. Therefore, this study aimed to 

develop an adjoint RNG k-ε turbulence model for 

inversely designing an indoor environment. 

2 Methods  

2.1 Objective function 

To design an indoor environment using the adjoint 

method, we must first construct a suitable objective 

function. For example, the objective function J is a 

desirable distribution of air velocity V and temperature T 

in the design domain Θ: 

 
Θ

( , d)J f T ξ V
   

 (1) 

where ξ is a vector that represents the design variables, 

such as air supply inlet size, number, and locations; air 

supply velocity, Vinlet; air supply temperature, Tinlet, etc., 

that could lead to the desirable distribution. In this study, 

air velocity V and temperature T in the design domain Θ, 

as shown in Eq. (1), are controlled by the incompressible, 

steady-state RANS equations, as shown in Eqs. (2), (3), 

and (4), closed with the RNG k-ε turbulence model [22], 

as expressed by Eqs. (5) and (6). 
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(7) 

In these equations, p represents the air pressure; νeff the 
effective viscosity; ν the kinematic (laminar) viscosity; 

D(V) = (∇V+(∇V)
T
)/2 the rate of strain tensor; γ the 

thermal expansion coefficient of air; g the gravity vector; 

Top the operating air temperature; κ effective thermal 

conductivity; k the turbulent kinetic energy; νk the 

effective diffusivity for k; Pk the shear production rates 

of the turbulence kinetic energy; Gb buoyancy 

production rates of turbulent kinetic energy; ε the 

turbulent energy dissipation; νε the effective diffusivity 

for ε;  cμ = 0.0845; η0 = 4.38; β = 0.012; Cε1 = 1.42; Cε2 

= 1.68; Cε3 = 1; Vi, Vj the components of the air velocity 

in the xi, xj directions, respectively, i, j = x, y, z; N 

represents the incompressible, steady-state RANS 

equations in residual form; and R the residual form of 

the RNG k-ε turbulence model equations. 

The purpose of the above constrained design problem 

is to identify a set of design variables which can lead to a 

minimum objective function. To minimize the objective 

function as shown in Eq. (1), the most common method 

is to use the optimization algorithm. This investigation 

used the steepest decent method [23] as shown in Eq. (8) 

to update the design variables. During the optimization 

process, the key was to calculate the gradient of the 

objective function over the design variables. Since the 

objective function implicitly contains the design 
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variables, we cannot directly calculate the gradient of the 

objective function over the design variables. Therefore, 

the CFD-based adjoint method was introduced in 

previous studies [7, 9-12] to calculate the gradients used 

in Eq. (8). 

n 1 n n

n

dJ

d
 ξ ξ

ξ
   (8) 

where n represents the design cycle, n ≥ 1 and λ is the 

constant step size. 

2.2 CFD-based adjoint method with the RNG k-ε 
turbulence model 

To calculate the gradient of the objective function over 

the design variables, the CFD-based adjoint method first 

introduces an augmented objective function L as shown 

in Eq. (9) and transforms the constrained design problem 

into an unconstrained optimization problem. Since we 

use RNG k-ε turbulence model to calculate the νt in N, 

the p, V, and T in N and k and ε in R are unknown 

variables when we derive the adjoint equations. 

Therefore, Eq. (9) should include the RNG k-ε 

turbulence model equations. 

   a a
Ω

a a,L J p , ,T ,, dk Ω   aV N R
 

 (9) 

where Ω represents the computational domain and pa, Va, 

Ta, ka, and εa are the adjoint pressure, adjoint velocity, 

adjoint temperature, adjoint turbulence kinetic energy, 

and adjoint rate of dissipation of turbulent energy, 

respectively. 

With this arrangement, the problem of solving the 

gradient of the objective function over the design 

variables becomes one of calculating the gradient of the 

augmented objective function over the design variables. 

In Eq. (9), the augmented objective function L is a 

nonlinear function of a set of discrete variables (p, V, T, 

k, and ε). In the gradient equation of the augmented 

objective function L over the design variables, p, V, T, k, 

and ε are related to the design variables. So, the most 

direct approach to evaluate the gradient is to apply the 

chain rule using the following equation: 

dL L L p L L T L k L

d p T k





          
     
          

V

ξ ξ ξ V ξ ξ ξ ξ
(10) 

However, direct calculation of the gradient of the 

augmented objective function over the air pressure p, 

velocity V, air temperature T, turbulence kinetic energy 

k, and rate of dissipation of turbulence energy ε is almost 

impossible with numerical algorithm today. In previous 

studies [7, 9-12], the CFD-based adjoint method only 

considered variations in the state variables. The method 

assumed that variations in the turbulent variables, such 

as k and ε, over the design variables were equal to zero. 

With the “frozen turbulence” assumption, the k and ε 

calculated when solving the RANS equations are used in 

solving the adjoint equations. The assumption is 

apparently incorrect, because the k and ε are not the 

same as adjoint k and adjoint ε. Thus, the following 

gradient of the augmented objective function over the 

design variables computed by the CFD-based adjoint 

method with the RNG k-ε turbulence model could lead 

to significant errors: 

dL L L p L L T

d p T

      
   
      

V

ξ ξ ξ V ξ ξ
  

 (11) 

Furthermore, the CFD-based adjoint method with the 

RNG k-ε turbulence model sets the sum of the last three 

terms of Eq. (11) to zero: 

L p L L T
d d d
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(12) 

Now we can obtain the formula for the gradient of the 

augmented objective function over the design variables: 

 a a
Ω

dL L J
p , ,T dΩ

d

  
   
   a

N
V

ξ ξ ξ ξ
 

(13) 

The detailed gradient formulas for the objective function 

over the air supply velocity Vinlet and air supply 

temperature Tinlet can be derived from Eq. (13). 

Note that the unknown variables in Eq. (13) are the 

adjoint variables. Therefore, we need to derive the 

adjoint equations from Eq. (12) and numerically solve 

the adjoint equations with the use of CFD software. 

Detailed information about the adjoint equations of the 

CFD-based adjoint method with the RNG k-ε turbulence 

model can be found in [12].  

Because the “frozen turbulence” assumption was used 

(i.e., the variation of the turbulent viscosity is equal to 

zero) to derive the adjoint equations and the RNG k-ε 

turbulence model was solved to provide the turbulent (or 

eddy) viscosity νt values when solving the adjoint 

equations, pa, Va, and Ta calculated were not very 

accurate. Thus the gradient of the augmented objective 

function over the design variables was inaccurate [17-

19]. The “frozen turbulence” assumption is correct only 

for laminar flow [24]. For turbulent flow, the turbulent 

viscosity νt is used to evaluate the effect of unresolved 

velocity fluctuations u′. Neglecting the variation in 

turbulent viscosity νt will lead to incomplete adjoint 

equations and inaccurate gradients. Therefore, we need 

to derive the complete adjoint equations for pa, Va, Ta, ka, 

and εa rather than partial set of the RANS equations only 

for pa, Va, and Ta in order to obtain more accurate results. 

2.3 CFD-based adjoint method with RNG k-ε 
adjoint turbulence model 

Unlike the CFD-based adjoint method with the RNG k-ε 

turbulence model, the adjoint RNG k-ε turbulence model 

considers variations in the turbulent variables, k and ε, 

over the design variables, as shown in Eq. (10). It is 

difficult to directly calculate the gradient of the 

augmented objective function over the air pressure p, 
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velocity V, temperature T, turbulence kinetic energy k, 

and rate of dissipation of turbulence energy ε. Thus, the 

sum of the last five terms of Eq. (10) is set to zero: 

L L L L L
dp d dT dk d 0

p T k




    
    

    
V

V
 

(14) 

Eq. (14) can then be used to derive the corresponding 

adjoint equations of the RANS equations closed with the 

RNG k-ε turbulence model. 

Since Eq. (14) is equal to zero, the gradient of the 

augmented objective function over the design variables 

of Eq. (10) can be expressed by 

 
 

a a
Ω

a a

,dL J
p , , ,k ,T dΩ

d



  
  a

N R
V

ξ ξ ξ
 

(15) 

Similar to Eq. (13), the detailed gradient formulas for the 

objective function over the design variables can be 

derived from Eq. (15) using the finite volume method. 

The CFD-based adjoint method with the RNG k-ε 

turbulence model adopted the RNG k-ε turbulence model 

for solving the RANS equations and the adjoint RNG k-ε 

turbulence model for solving the adjoint RANS 

equations. When the RANS equations closed with the 

RNG k-ε turbulence model and the adjoint equations are 

numerically solved in succession, all state fields and 

adjoint fields needed for calculating the gradient of the 

objective function over the design variables are available. 

2.4 Numerical method 

The CFD-based adjoint method with the RNG k-ε 

turbulence model and the adjoint RNG k-ε turbulence 

model were previously implemented in OpenFOAM 

(Open Field Operation And Manipulation) [25]. This 

investigation first used Gambit [26] to spatially 

discretize the geometric models and then employed the 

finite volume method to discretize the RANS equations 

closed with the turbulence model and adjoint equations. 

The convection and diffusion terms of the RANS 

equations closed with the turbulence model and adjoint 

equations were discretized by the first-order upwind 

scheme and the central difference scheme, respectively. 

Previous studies [1,7, 9-11] all used the first-order 

upwind scheme to discretize the convection terms of 

both set of equations and none of the studies have not 

reported any accuracy issues. Thus, we used the same 

scheme and did not explore high-order numerical 

scheme. This investigation applied the generalized 

geometric-algebraic multi-grid (GAMG) solver [27] to 

solve the continuity equation and smoothSolver (a solver 

that uses a smoother) [25] to solve the other equations, 

respectively. The semi-implicit method for pressure-

linked equations (SIMPLE) algorithm [28] turns the 

continuity equation into a pressure equation when 

solving the RANS equations. Similarly, this 

investigation introduced an adjoint pressure equation to 

replace the adjoint continuity equation. The Boussinesq 

approximation [29] was used to simulate the thermal 

plume generated by the temperature difference. The 

convergence criterion was set as |Jn-Jn-1| < δ (where n ≥ 2 

and δ = 10
-3

) 

3 Results  

In order to verify the performance of the adjoint RNG k-

ε turbulence model for inverse design of an indoor 

environment, this study tested the proposed method by 

applying it to a two-dimensional ventilated cavity [30]. 

To prove the accuracy of the proposed method and the 

necessity of developing a new method, the CFD-based 

adjoint method with the RNG k-ε turbulence model was 

conducted as a comparison.  

3.1 Two-dimensional ventilated cavity 

The first case is a simple two-dimensional ventilated 

cavity, as shown in Figure 1, with experimental data (i.e., 

velocity and temperature) along the green center lines 

and detailed information about all boundary conditions 

available [30]. The experiment supplied air through the 

inlet at the top of the left wall and exhausted air through 

the outlet at the bottom of the right wall. With the 

exception of the floor, which was heated to 35.5 ºC, the 

temperatures of the ceiling and walls were all controlled 

at 15.0 ºC. 

 

Fig. 1. Schematic of a two-dimensional ventilated cavity 

• Forward CFD simulation: 

Before starting the inverse design process, we needed to 

prove that we had the ability to conduct the forward CFD 

simulation correctly. This investigation conducted 

forward CFD simulation using experimental boundary 

conditions. Experimental data along the green center 

lines was used to verify the results of the simulation. 

Figure 2 compares the air velocity and temperature 

profiles predicted by CFD with the RNG k-ε turbulence 

model and the experimental data at x = 0.5 l. The 

comparison indicates that we were able to predict the air 

distribution accurately in the ventilated cavity. However, 

the simulation results did not coincide completely with 

the experimental results. The mean relative error of the 

air temperature between the CFD simulation results and 

the experimental data is 2.2%. However, the mean 

relative error of the air velocity is a little higher, that is 

because the velocity at the center of the cavity is very 

small. Thus, there were errors between the experimental 
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data and the results predicted by CFD. The discrepancies 

may have arisen from measurement errors and 

uncontrollable factors during the experiment, and 

numerical errors in the forward CFD simulation. Such 

errors may affect the inverse design results, and 

therefore we could not set the experimental data along 

the green lines as the target values for construction of the 

objective function. 

 
(a) 

 
(b) 

 

Fig. 2. Comparison of air velocity and temperature profiles 

predicted by CFD with the RNG k-ε turbulence model and 

experimental data from Blay et al. [30] along the x = 0.5 l 

section 

• Inverse design process: 

Since our purpose was to verify the performance of the 

proposed method using the numerical method, we set the 

forward CFD simulation results along the two mid-

sections (green lines) as target values to eliminate the 

influence of experimental errors and numerical errors, 

and the air supply parameters as the design variables to 

construct the objective function. If the air supply 

parameters identified were found to be consistent with 

the experimental air supply parameters, the proposed 

method would be verified. For this case, we used the 

predicted air velocity V0, ii (vector) and air temperature 

T0, ii in a design domain (the values along the two mid-

sections), Θ, as the target values to construct the 

objective function, which can be expressed as: 

   
m m

2 2

1 norm ii 0,ii 0,2 norm ii

ii 1

i

i 1

i

i

J W V W T T T
 

   ξ V V

    
(16) 

where 

 
norm norm2 2

inlet, a mx m x in

1 1
V ;T

V T T
 

    
(17) 

where W1 and W2 are the weighting factors, assumed to 

be 0.5 in this study; Vnorm and Tnorm the normalization 

factors; Tmax and Tmin are equal to 35.5ºC and 15.0ºC, 

respectively; Vinlet, x inlet air velocity in the x directions; 

m the total number data in the design domain; and Vii 

and Tii the inversely designed results in the design 

domain, in this case, respectively. With the above 

objective function, the adjoint RNG k-ε turbulence 

model started its inverse design process from the initial 

inlet boundary conditions. These boundary conditions 

were Vinlet = (0.8, 0) m/s and Tinlet = 22.0 ºC. For each 

design cycle, both the RANS equations closed with the 

turbulence model and the adjoint equations were 

calculated with the use of 2,000 iterations to ensure 

convergence. 

• Ruling out the influence of step size: 

To study the accuracy of the gradient calculated by the 

proposed method and rule out the influence of step size, 

we adopted the steepest descent method with proper 

constant step size in Eq. (8) to update the design 

variables. Since an improper constant step size could 

cause the objective function to become trapped in local 

optima or the calculation to diverge, this investigation 

used different step sizes for Cases A-0, A-1, A-2, and A-

3, as shown in Table 1. Figure 3 depicts the variation in 

the objective function with the design cycle during the 

inverse design process. A comparison of Case A-0 with 

Case A-1 indicates that the smaller step sizes would 

cause the objective function to become trapped in local 

optima and stop decreasing after a certain number of 

design cycles. As we continued to increase the step sizes 

in Case A-2, the convergence speed accelerated. If the 

step sizes were too large, as in Case A-3, the method 

would cause the calculation to diverge. After comparing 

the above four cases, we selected the appropriate step 

sizes of Case A-2 in the two-dimensional ventilated 

cavity and ruled out the influence of step size for further 

analysis. Table 1 also shows that the air supply 

parameters in Case A-2 were the closest to the 

experimental air supply boundary conditions. 
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Table 1. Cases with different step sizes and air supply 

parameters identified by both methods 

 

Step size for 

updating 

Vinlet 

Step size for 

updating 

Tinlet 

Vinlet, x 

(m/s) 

Tinlet 

(K) 

Case A-0 0.0008 10 0.69 291.62 

Case A-1 0.004 50 0.56 288.36 

Case A-2 0.016 200 0.56 288.15 

Case A-3 0.032 400 N/A N/A 

 

Fig. 3. Variation in the objective function with the design cycle 

for cases with different step sizes 

With the step sizes from Case A-2 and the same 

initialized air supply parameters, we also used the CFD-

based adjoint method with the RNG k-ε turbulence 

model to inversely identify the optimal design variables 

for the ventilated cavity, in order to illustrate the need 

for the new method. Figure 4 compared the k with ka 

(adjoint k) of these two methods when solving the 

adjoint equations at the first design cycle that was 

because these two methods have the same air supply 

parameters only in this design cycle during the inverse 

design process. The k is the forward turbulent energy, 

while the ka is backward turbulent energy. The forward 

turbulent energy represents the degree of chaos of the 

flow, while the backward turbulent energy is the 

opposite. They are very different because two sets of 

equations are different. As a result, the gradients 

calculated by these two methods are different. When the 

objective function of the CFD-based adjoint method with 

the RNG k-ε turbulence model met the convergence 

criteria, as shown in Figure 5, the objective function of 

the adjoint RNG k-ε turbulence model reached the same 

value at almost the same time. However, the new method 

can cause the objective function to continue to decrease. 

The design variables identified by the adjoint RNG k-ε 

turbulence model for Case A-2 were almost the same as 

the known experimental data, as shown in Table 2. This 

indicates that the adjoint RNG k-ε turbulence model has 

higher calculation accuracy. 

     

(a) 

 

 

(b) 

Fig. 4. Comparison of (a) k calculated with the RNG k-ε 

turbulence model and (b) ka calculated with the adjoint RNG k-

ε turbulence model at the first design cycle 

 

Fig. 5. Variation in the objective function with the design cycle 

for the two-dimensional ventilated cavity 

Table 2. Design variables identified by different methods 

compared with the experimental boundary conditions 

 
Vinlet, x 

(m/s) 
Tinlet (K) J 

With the RNG k-ε 

turbulence model 
0.54 287.36 0.13 

With the adjoint RNG k-ε 

turbulence model 
0.56 288.15 0.0004 

Experimental data [30] 0.57 288.15  

ka 

k 
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After the optimal air supply parameters, as shown in 

Table 2, had been identified by the two methods, we 

conducted forward CFD simulation to determine whether 

the optimized air distribution was consistent with the 

target values. Figure 6 illustrates the velocity vector and 

temperature profiles in the design domain predicted with 

the RNG k-ε turbulence model and with the adjoint RNG 

k-ε turbulence model. The air distribution in the design 

domain optimized with the adjoint RNG k-ε turbulence 

model was closer to the target values than the 

distribution optimized with the RNG k-ε turbulence 

model, especially in the center of the design domain. The 

air temperatures at x = 0.5 l predicted with the RNG k-ε 

turbulence model were also much lower than the actual 

values. Thus, the performance of the adjoint RNG k-ε 

turbulence model was better. 

 

 
(a) 

 

 

(b) 

Fig. 6. Comparison of air velocity vectors in the design domain 

and temperature profiles at x = 0.5 l predicted with the RNG k-

ε turbulence model and with the adjoint RNG k-ε turbulence 

model, and the forward CFD simulation results using 

experimental boundary conditions from Blay et al. [30] 

4 Discussions 

The adjoint RNG k-ε turbulence model improved the 

optimal design accuracy, but it could not overcome the 

inherent disadvantages of the CFD-based adjoint 

method. The objective function could also become 

trapped in local optima. If the initial design variables 

were far away from the optimal values or the step size 

was not appropriate, the calculation might not lead to the 

optimal design. 

This study used only air velocity distribution and 

temperature distribution to test the performance of the 

proposed method. With the adjoint method, one could 

add further design objectives without increasing the 

computing costs. 

This study only derived the adjoint equations of the 

RANS equations with the RNG k-ε turbulence model. 

However, the turbulence viscosity νt determined by the 

RNG k-ε turbulence model cannot uniquely determine 

the effect of the turbulence and direct numerical 

simulation (DNS) can provide the results closest to 

reality, so the most accurate method is deriving the 

adjoint equations of the N-S equations directly. 

Due to space limitations, this article does not discuss 

three-dimensional cases. We will explore the application 

of the new method to the three-dimensional case in the 

future study.  

5 Conclusions 

This investigation developed an adjoint RNG k-ε 

turbulence model for the CFD-based adjoint method for 

optimal design of the indoor environment. The following 

conclusions can be drawn from this study: 

• The CFD-based adjoint method with the adjoint 

RNG k-ε turbulence model can be used to design the 

optimal air velocity distribution and temperature 

distribution for a two-dimensional ventilated cavity. 

• The design process with the adjoint RNG k-ε 

turbulence model identified design variables that were 

more accurate than those identified with the RNG k-ε 

turbulence model. However, the design variables 

identified with the RNG k-ε turbulence model were more 

stable during the inverse design process. 
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