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Abstract. The focused investigation of building design is necessary to understand and quantify the 
implication of different design parameters on their energy performance. The design of future buildings is a 
major challenge, as current designs may be inappropriate in a future with global warming due to climate 
change impacts.  In addition this understanding is necessary to be able to predict timing and profile of future 
energy demand, which is crucial for the long-term planning of energy infrastructures – particularly electricity. 
In this paper, the Morris Elementary Effects method is used as a screening method, to identify the key 
parameters of the design and operation of office buildings that affect the estimation of space cooling peak 
load and annual energy demand. Internal heat gains, cooling set-point and ventilation rates are identified as 
the parameters with larger implications for both annual and peak space cooling demand. In future climate 
scenarios, the magnitude of change of annual space cooling demand is significantly (around five times) larger 
than the change in the peak demand. Asides from the potential increase of space cooling demand in future 
scenarios, the sensitivity of the space cooling demand relative to the change in design parameters is potentially 
much larger. 

1 Introduction  

Mitigation and adaptation to Climate Change (CC) 
impacts will be one of the most important challenges of 
the twenty-first century. The UK Climate Projections 
produced in 2009 (UKCP09) estimate that the increase in 
maximum summer temperatures in the UK may be 
between 2 and 10°C by the 2080s in comparison to the 
baseline period (1960-1990) [1]. Therefore, it is necessary 
to consider approaches to the mitigation of CC impacts 
and study the possible consequences in order to take 
informed and rational actions. 

Current building designs may be inappropriate in the 
future, and indeed within the current UK building stock, 
there are concerns that overheating is occurring more 
frequently [2,3]. It has been predicted that this effect will 
be exacerbated by future CC. In particular, rising 
temperatures could lead to a substantial increase in 
cooling demand and cooling peak loads, namely due to an 
increase in Air Conditioning (AC) penetration and more 
intense demand from existing cooling systems [4]. 

Office buildings in the UK generally exhibit 
significant intense internal heat gains (IHG) (over 40 
W.m-2) [5] and large floor space areas (over 1000 m2) [6], 
which leads to high cooling requirements. It is estimated 
that 65% of the total office floor space area in the UK is 
provided with mechanical cooling [6]. Furthermore, 
future climate projections suggest that there are risks that 
cooling demand and overheating intensity will increase 
significantly in office buildings in the UK [3,7,8]. 
Therefore, to thoroughly understand the extension of the 

effect on cooling demand of buildings due to CC impacts, 
it is necessary to evaluate the thermal performance of 
buildings using a vast and flexible set of parameters. 

Dynamic building performance simulation permits 
comprehensive analysis of buildings’ thermal 
performance, allowing detailed input characterisation of 
models, an extensive set of output variables and different 
time-scales of analysis. On the other hand, its complexity 
can exacerbate the uncertainty of the analysis, due to the 
requirement for extensive and accurate input model 
parameters. 

The uncertainty on the energy performance of future 
buildings is the aggregation of different sources of 
uncertainties in model inputs and modelling scenarios 
[9,10]. Uncertainties result from possible discrepancies in 
the characterisation of occupancy, building envelopes and 
HVAC systems in future building stocks and the 
estimation of future weather conditions. In order to 
produce better estimations of future office buildings’ 
energy performance, it is important to quantify the 
implication of each building system model component 
and boundary conditions, on the energy demand and peak 
load of space heating and cooling demand. This research 
aims to identify the key parameters associated with the 
design and operation of office buildings which affect the 
estimates of space cooling peak load and annual energy 
demand. Therefore, in this paper, the Morris Elementary 
Effect (EE) screening method is used on an office 
building energy model to investigate this.  

The research presented in this paper is an initial stage 
of a larger research project which intends to estimate the 
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implications of the effect of future cooling demand of 
office buildings on power networks due to CC. Being able 
to predict the timing and profile of future demand is 
crucial for the long-term planning of energy 
infrastructure, system operation, and building design. 
However, there is only a limited amount of literature 
available addressing the quantification and understanding 
of the ramifications of CC impacts for building energy 
demand [11], especially with regard to peak demand for 
space cooling. Therefore, the outcome of this paper 
intends to define the implications of different design 
variables in the peak and annual space cooling demand.  

2 Background and literature review 

2.1 Sensitivity Analysis 

The sensitivity of building energy model outputs can be 
explored by using automated parametric simulation which 
imposes variation on the domain of input parameters. This 
can enable the analysis of the robustness of the results 
generated from the execution of a Sensitivity Analysis 
(SA) [12]. SA investigates the implication of variation in 
input parameters on the output,  these analyses can be 
categorised into two types, global and local [10]. The 
local SA explores the sensitivity of individual parameters, 
so it is a straightforward system; however, it can only 
analyse a restricted section of the input range. On the other 
hand, the global SA verifies the implications of several 
parameters simultaneously [10].  

A SA is generally executed in a sequential procedure, 
starting with the definition of the input parameter to be 
iterated and the range and distribution to be varied as 
described by Tian [10]. After this, the sample must be 
generated with the input parameters to be simulated, 
which thereby will allow the execution of the simulation 
in the model. Finally, sensitivity indices of input 
parameters can be calculated based on the results 
generated by the simulation of models. 

Screening is a particular technique of global SA, it 
includes the use of a fixing factor, which evaluates the 
impact of the variation of the model’s inputs given a new 
value to only one factor at each simulation run. Variance-
based methods such as SOBOL or FAST, permit to better 
quantify the full range of variation of each input factor, 
decompose the variance sources and evaluate the 
interaction effects among input factors [13]. However, the 
computational costs of these methods can be prohibitive. 
The Morris EE method is often used in building energy 
simulation studies [14,15]. It is a simple and easy to 
implement method that is used to prune input parameters 
on a complex model, before applying other more complex 
global SA, namely variance based methods [13]. This 
method performs a relatively low number of iterations 
considering a large number of design parameters 
compared to other methods for global SA. It permits a 
straightforward interpretation of results, which can give a 
measure of the overall effect of a parameter on the output, 
considering also the interaction between parameters. 

2.2 Office simulation parametric studies 

The review of the literature shows that the majority of the 
studies evaluating the variability in input parameters of 
building simulations analyse one or several of the 
following type of parameters: climate conditions, the 
building form, building fabric, the building occupancy 
conditions (for example IHG) or the building HVAC 
system operation. These parametric analyses of building 
simulations look at different types of outputs, such as the 
total annual electricity demand [16], overheating risks 
[17] or annual space cooling demand [18,19]. 

The parameters identified in the literature which were 
more correlated to cooling requirements of office 
buildings are the IHG such as from equipment, lighting 
and occupants [16,20]. Tian et al. [19] also show that 
window properties have significant implications for 
cooling demand. Similarly,  the implications of COP and 
space set-points are also highlighted [21]. CC has 
significant implications for cooling demand, particularly 
when using CC projections for 2080 as identified in [17]. 
However, the effects of input model parameter variance 
on cooling peak loads are rarely covered in the literature 
reviewed. 

This paper evaluates the effect of different sets of 
building parameters in the space cooling load 
requirements of an office building. The parametric study 
covers analysis of different envelope characteristics, 
building occupancy patterns, building form, and climate 
conditions. For this study we have chosen the Morris EE 
screening method to rank their effect over the space 
cooling demand. The method is very simple yet is a very 
effective way to prune the main input factors in a model. 
Thus, it is indicated to be applied in the analysis over a 
simplified office model as it is this case. Additionally, the 
implications of future climate projections will be 
quantified and the sensitivity of the parameters in these 
conditions will be compared to the initial conditions. 

3 Methodology  

3.1 Modelling Framework 

 

Fig. 1. Standard Model (OpenStudio) 

The simulation results of an office building model, shown 
in Fig. 1, are explored in order to evaluate the sensitivity 
of space cooling demand to different sets of model 
parameters. Firstly, the Morris EE screening method is 
executed in order to identify the input factors with higher 
predominance in the peak space cooling demand results. 
Thereafter, the same methodology is executed using 

 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110409)
201

E3S 111
CLIMA 9

4038 38

2



 

different climate projections, assessing the implications of 
future climate on space cooling demand. 

3.2 EnergyPlus Physical Model 

One generic office building energy model was developed 
in the building performance simulation program 
EnergyPlus [22], which permits a straightforward 
parameterisation of main input design parameters. 
EnergyPlus was chosen because it has been updated and 
validated continuously over the last 30 years and it is 
widely used for research due to the confidence in the 
results produced [23]. 

The base model of the study is a single floor building, 
with a gross internal floor area of 1600 m2, 40m width, 
40m length, 3.5m height, and has a glazing area of 40% 
on its external wall. The envelope characteristics of the 
model were selected based on the benchmark values of 
ASHRAE 189.1 [24], available in OpenStudio libraries. 
A summary of the thermal properties of these construction 
materials is given in Table 1. 

The algorithm chosen for internal calculations of the 
EnergyPlus engine are the standard provided options. 
Therefore, the heat balance in the geometries uses the 
conduction transfer function model, the zone air heat 
balance uses the third order backward difference model 
and TARP and DOE-2 are used to calculate inside and 
outside surface convection coefficients respectively.  

The EnergyPlus model utilizes the Ideal HVAC 
System object, which represents a building operation 
where cooling or heating loads are supplied in order to 
meet zone’s control specifications. The simulations are 
then executed at six timesteps per hour, and results are 
reported at an hourly basis, during a whole simulation 
year. Space cooling demand is reported as the output 
results, and different post-process is conducted to obtain 
analysis at different time-scales. This output refers to the 
total cooling load of the HVAC system, so including 
sensible and latent cooling loads. 

Table 1. Construction Objects for the EnergyPlus model 

 Construction Object 
U-Values 

[W.m-2.K-1] 

Floor 
ExtSlabCarpet 4 in Cli. Zone 1-
8 

0.19 

External 
Wall 

ASHRAE 189.1-2009 External 
Wall 

0.45 

Windows 
ASHRAE 189.1-
2009ExtWindow Cli. Zone 4-5 

2.5 

External 
Roof 

ASHRAE 189.1-2009 
ExtRoof IEAD Cli. Zone 2-5 

0.22 

3.3 Base model  

The operation settings of the building model are defined 
as being uninterrupted, so all the occupancy assumptions 
are fixed at a single constant value for the whole 
simulation period. The operational parameters 
assumptions considered in this analysis are based on 
generic benchmark information for office buildings given 
by CIBSE [25] and BRE [5]. For example, total IHG are 

set at 40 W.m-2, and the ventilation rate plus the 
infiltration rate of the building is defined to be 1.6 air 
changes per hour. The cooling set-point of the zones in the 
model is set at 24°C. Table 2 shows the base values of the 
different variables tested in the simulation. 

Korolija et al. [26] defined similar baseline input 
parameters as used in the base model of the paper, for the 
UK office buildings archetypal models proposed, namely 
IHG, infiltration and ventilation rates and cooling set-
points. The latest review of UK regulation for office 
buildings [27] define maximum values for envelope 
elements U-values [W.m-2.K-1] as 0.35 for external walls 
and 2.2 for glazing and 0.25 for roof and ground floor. 
The base model in this paper presents higher U-values 
than these legislation limits for glazing and external wall 
envelopes. However, the range of parameters covered in 
the SA also include samples that will simulate cases with 
much lower values than the legislation limits. 

3.4 Parametric study 

The variation considered in the analysis on the model 
input parameters is shown in Table 2. The analysis 
presented here has tested the input variation with this 
range of parameters, accordingly the distribution of 
conditions used, and it does not intend to represent the 
statistical representation of the parameters in the current 
office building stock. Rather, the purpose is to test the 
sensitivity of the model output results on the foreseeable 
possible range of the input parameter. Therefore, uniform 
distribution of these parameters values is considered, with 
ranges spanning from the minimum and maximum values 
that are assumed to be plausible to find in office buildings. 

The input parameters are grouped into 3 functional 
categories of building characteristics. The first focuses 
only on the building envelope (P1-P8), the second focuses 
on operational parameters (P9-P12) and the third category 
focuses on building form (P13-P16). 

Table 2. Input Parameters 

  Parameter Baseline Distribution 

E
nv

el
op

e 

P1 Thermal 
Absorptance1,2 

0.91 U (0.5 ; 0.96) 

P2 Solar 
Absortance1,2 

0.7 U (0.3 ; 0.96) 

P3 Solar Glass 
Transmissivity1 

0.3311 
U (0.15 ; 

0.38) 

P4 CP Concrete1,3 
837 

J.kg-1.K-1 
U (200 ; 

4000) 

P5 Glass 
conductivity1 

0.0133 
W.m-1.K-1 

U (0.005 ; 
0.03) 

P6 External Wall 
insulation1 

0.0432 
W.m-1.K-1 

U (0.01 ; 
0.065) 

P7 Roof insulation1 
0.049 

W.m-1.K-1 
U (0.01 ; 
0.065) 

P8 External 
Absorptance1,2 

0.92 U (0.5 ; 0.97) 

O
pe

ra P9 Sensible IHG 4,5 
40 

W.m-2 
U (10 ; 80) 

P10 Ventilation Rate4,5 
0.0015 

m3.s-1.m-2 
U (0.0005 ; 

0.005) 
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P11 Infiltration Rate4,5 
0.0002 

m3.s-1.m-2 
U (0.0001 ; 

0.001) 

P12 Cooling Set-
Point4 

24 °C U (18,26) 

F
or

m
 

P13 North Rotation 0° U (0 ; 180) 
P14 Glazing area 40% U (5% ; 75%) 

P15 North Facade / 
East Facade ratio 

1 U (0.4 ; 9) 

P16 Ratio relative to 
base model area 

1 U (0.08 ; 25) 

Source: 1[24]; 2[25]; 3[28, p. ’3-40]; 4[26]; 5[5]  

3.5 Climate  

Manchester was defined as the location of the model and 
the future test reference year weather files, produced by 
the PROMETHEUS project [28], were utilized in this 
simulation procedure. Five files were used, as shown in 
Table 3, one representing the baseline weather conditions 
(C5) and four different potential future climate impacts 
(C1-4). This evaluates the implications of different levels 
of CC impacts, as these four files consider different level 
of probabilities (10%, 50%, and 90%) for the high 
emission scenario (a1f1) in 2080 and 90% probability of 
the medium scenario (a1b) in 2080.  

Simulations were executed using the whole annual 
hourly data contained in these weather files. However, 
Fig. 2 only shows a comparison of the dry bulb 
temperature profile of three weather files used, between 
the days that precede and succeed the day of maximum 
temperature. This emphasizes the possible level of change 
during annual extreme warmer periods. 

 

Fig. 2. Dry bulb temperature in a 3 day period, between the days 
that precede and succeed the day of maximum temperature 

In Fig. 2, it can be seen that the dry bulb temperature 
profile in these future climate projections will be 
significantly shifted compared to the current baseline 
weather profile (C5). The annual maximum temperature 
is expected to reach 37.2°C in the worst scenario (C1), 
almost 9°C higher than the current baseline maximum dry 
bulb temperature. Additionally, Table 3 provides a 
summary of the weather data in terms of annual cooling 
degree days (CDD) and cooling degree hours (CDH) 
contained in the 5 climate files used in this analysis. A 
steep increase (tenfold) in the number of CDDs is 
predicted within the a1f1 (C1 case) climate projection. 
Similarly, during the three days period analysed in Fig. 2, 
the CDH in scenario C1 double compared to the baseline 
period levels (C5). Therefore, the same series of 
simulations will be conducted with the different weather 

files to access the implications of the climate in the space 
cooling demand of the model. 

Table 3. Weather data information on climate files utilized 

Number and file 
description 

Annual 
CDD* 

3 Days 
CDH* 

Max. 
Temp. 

C1 2080 a1f1_90% 1020 813 37.2 
C2 2080 a1b1_90% 836 767 33.3 
C3 2080 a1f1_50% 596 703 31.4 
C4 2080 a1f1_10% 296 415 28 
C5 Baseline period 103 337 28.3 
*CDD and CDH calculated based on 15 0C baseline 

3.6 Sensitivity Measures 

Firstly, a sample of 595 different variations of input 
parameters was created according to the Morris EE 
method [13], screening individually and sequentially all 
16 input variables in a systematic manner, denominated 
trajectories, for 35 different times. The  distribution 
ranges of each variable are shown in Table 2, and the 
generation of the input parameter samples was conducted 
using SIMLAB [29] for the Morris EE method, 
considering six different input levels for each variable. 
Thereafter, the sample input parameters were imported 
into JEPlus [30], and simulations were executed in 
EnergyPlus. The peak total space cooling demand and 
annual total space cooling demand for each simulation 
executed were collected to calculate the Morris screening 
indices (Equations, 1, 2 and 3) [13]: 

 𝜇 ∗ =
1

𝑟

𝑦 𝑥( ) − 𝑥( )

∆
 ( 1 ) 

 𝐸𝐸 (𝑥( )) =
𝑦 𝑥( ) − 𝑥( )

∆
 ( 2 ) 

 𝜎 =
1

𝑟 − 1
𝐸𝐸 − 𝜇  ( 3 ) 

Where:  

𝜇 ∗ Mean, sensitivity measure 
𝜎  Standard deviation, sensitivity measure 

𝐸𝐸  
Elementary effect relative to factor i along 
trajectory j 

𝑟 Total number of trajectories 
𝑗 Current trajectory 
𝑖 Parameter analysed 
∆ Sampling distance interval 

Based on the screening sensitivity measures results 
(𝜇 ∗,𝜎 ) the model input parameters are ranked and further 
analysis of parameter sensitivities are focused on this 
restricted number of parameters. 

4. Results 
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Firstly, the results for space cooling requirements of the 
standard baseline office building model, defined in the 
considered standard parameter settings and utilizing the 
current base climate file are presented. The annual total 
space cooling demand, in this case, is 38.8 kWh.m-2 of the 
floor space area and the peak space cooling demand 
during the simulated year period is 55.2 W.m-2. CIBSE 
guide F [31] states that space cooling requirements to be 
between 14-41 kWh.m-2.year-1. Abela et al. [6] concluded 
average peak cooling power in the UK is 50-75 W.m-2. 
This peak value is significant behind the rule of thumb for 
office building cooling plants given in CIBSE guide F 
[31], which may be extremely conservative in 
assumptions for operating conditions. 

Table 4. Space cooling requirement for standard office model 
in the baseline scenario. 

Annual energy demand Peak demand 
38.8 kWh.m-2 55.2 W.m-2 

4.1 Peak cooling demand  

Two sensitivity measures (σ,μ*) relative to the peak space 
cooling demand are calculated for each input parameter of 
the model. In Fig. 3, the Morris sensitivity measures 
relative to the peak space cooling demand of the office 
model are presented. Peak space cooling demand is most 
sensitive to Parameter 9 – IHG, closely followed by the 
Parameter 12 – cooling set-point, then by Parameter 10 – 
ventilation rate and finally by the Parameter 16 – indexed 
relative to the base model area.  Glazing ratio (P14), 
Infiltration rate (P11) and North-East facade ratio (P15) 
show much lower sensitivity for the peak demand than 
parameters listed above; however, the sensitivity 
measures are still noticeable from the remaining 
parameters. All the remaining input parameters show 
much smaller effect, as they can be seen in the bottom left 
of the plot, with reduced values of the sensitivity measures 
(σ,μ*). 

 
Fig. 3. Morris EE indices for peak cooling load 

4.2 Annual space cooling demand 

The EE sensitivity measures of the building model 
relative to the annual space cooling demand are presented 
in Fig. 4. Regarding this simulation output, IHG (P9) is 
the parameter with the greatest sensitivity, almost 
doubling the mean sensitivity measure for ventilation rate 

(P10) and cooling set-point (P12). Parameter 16 and 11 
present sensitivity measures values significantly smaller 
than the previous parameters, but clearly distinguishable 
from remaining parameters at the bottom left of figure 4 
with much lower values of the sensitivity measures (σ,μ*). 

It is relevant to focus on the significantly larger value 
of the sensitivity measures presented relative to annual 
space cooling demand than for peak demand. 
Additionally, the total variation of the outputs (annual and 
peak) in the whole Morris EE analysis is presented in 
Table 5. Both of the sensitivity measures Fig. 3 and Fig. 4 
and the extreme variation of the output (Table 5) in the 
sample simulated show the larger variability of the annual 
demand than the peak space cooling demand. 

 
Fig. 4. Morris EE indices for annual cooling energy demand 

Table 5, Output variation of the simulation sample used in the 
Morris EE analysis 

 Min. Std. Max. 
Annual 

[kWh.m-2] 
0.04 

(-99.9%) 
38.8 

563.2 
(1352%) 

Peak 
[W.m-2] 

6.72 
(-88%) 

55.2 
209.5 

(280%) 

4.3 Climate conditions 

The simulation results of the standard parameterisation of 
the office building model, defined in Table 2, considering 
different climate conditions are presented in Table 6. The 
simulation results indicate that future climate projections 
may increase the annual space cooling requirements by 
287%, for the most pessimistic CC scenario (C1).  In the 
same climate scenario, the peak space cooling demand is 
increased by 61%. In the least severe future climate 
scenario considered (C4), the annual space cooling 
requirement increases 76%; however, the peak is only 8% 
higher than the value in the baseline scenario (C5). 

Table 6. Base model output evolution considering the different 
climate scenarios 

Climate Projection 
Annual 

[kWh.m-2] 
Peak 

[W.m-2] 
(C1) 2080 a1f1 90% 150.0 (287%) 88.6 (61%) 
(C2) 2080 a1b 90% 130.0 (235%) 85.6 (55%) 
(C3) 2080 a1f1 50% 104.5 (169%) 78.6 (42%) 
(C4) 2080 a1f1 10% 68.3 (76%) 59.9 (8%) 
(C5) Baseline 38.8 55.2 
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In Fig. 5 and Fig. 6 a comparison of the sensitivity 
measures relative to both outputs (Peak and Annual 
demand, respectively) is presented, considering the values 
achieved on the baseline climate scenario (C5) and for the 
most severe climate conditions (C1). The peak space 
cooling demand in a more severe climate, such as C1, 
becomes more sensitive than previously due to Parameter 
10, as the sensitivity measure μ* increases by almost 
153%. Similarly, parameters 11 and 16 present 
significantly larger sensitivity measures, 177% and 81% 
respectively. On the other hand, the sensitivity of the peak 
demand is not as much changed due to 9 and 12, once 
sensitivities are only increased by 7% and 20%, 
respectively.  

  
Fig. 5. Sensitivity measures progression of main parameters for 
peak demand relative to the climate 

Relative to the annual space cooling demand, 
presented in Fig. 6, the output becomes less sensitive in 
future climate scenarios (C1) regarding several 
parameters. The mean sensitivity measure, μ*, for 
parameter 10 and 11 decrease 41% and 22% respectively. 
On the other hand, the sensitivity measures for parameter 
9 and 12 are increased by 84% and 106% respectively. 
Therefore, these two parameters continue to assume the 
largest sensitivity in climate conditions such as in C1. 

 
Fig. 6. Sensitivity measures progression of main parameters for 
annual demand relative to the climate 

5 Discussion 

The validity of the modelling assumptions made for the 
purpose of this study were initially checked, comparing 
the output results of the base input model parameters, 
presented in Table 4, to the benchmark data of typical 
office buildings in the UK. Thereafter, it is considered that 

the baseline of the SA is reliable, ensuring the plausibility 
of the possible findings of the sensitivity procedure 
proposed. 

The clearest finding of the SA conducted is that annual 
space cooling demand is significantly more sensitive than 
peak space cooling demand to design parameter 
variations. The spectrum of variation is around five times 
larger for the annual space cooling demand than to the 
peak space cooling in the set of simulations executed. 
Similarly, the magnitude of the sensitivity measures 
relative to the annual output is superior to the verified for 
the peak space cooling demand. Jenkins et al. [8] have 
similar level of relationship between the change in peak 
and annual cooling loads for future CC scenarios. 

The analysis enables the user to clearly distinguish the 
implications of 5 input parameters relative to the annual 
and peak space cooling demand of the model. The 
sensitivity measures of the parameters both for peak and 
annual space cooling demand clearly show that the IHG 
(P9), the control set-point (P12), the ventilation rate 
(P10), infiltration rate (P11) and the space floor index 
(P16) are the parameters that influence the most the 
variability of these outputs. 

Both for annual space cooling demand and peak space 
cooling demand, the IHG (P9), the control cooling set-
point (P12) and the ventilation rate (P10) present the 
largest implications. This is expected to be significantly 
altered in future climate scenarios. Ventilation (P10) and 
infiltration rates (P11) are expected to have larger 
sensitivity on peak demand for future climates than have 
been shown in current climate. However, for future annual 
space cooling demand, the same parameters present 
smaller sensitivity measures than compared to current 
scenario. Therefore, ventilation rate (P10) will present the 
largest implication for peak space cooling demand and, 
IHG (P9) and cooling set-point (P12) have the largest 
sensitivity for annual cooling demand. 

Table 7 presents a measure of local sensitivities of 
input parameters for the base standard model, given in 
Table 2. These local sensitivities are the ratio between the 
maximum and output result, on a set of simulations that 
alters individually and only a single parameter over the 
whole admissible input range. A large ratio imply a 
significant variation of the output considering only the 
change of that parameter. Comparing the relative grade of 
IHG parameter (P9) to other parameters on local 
sensitivity results, and among Morris EE sensitivity 
measures values, it is possible to identify substantial 
discrepancies. This indicates a correlation effect of input 
parameters that exacerbate or minimize the sensitivity of 
the model output relative to a parameter in a global 
analysis. Therefore, significant differences between the 
grades of sensitivity of a model relative to each input 
parameter can exist between local and global SA. 

Table 7. – Ratio of maximum/minimum output results with 
local (individual) variation of model input parameters 

Par. Peak Annual 
P9 4.57 451.26 

P12 1.84 12.15 
P10 1.73 13.06 
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P16 1.53 1.04 
P14 1.21 1.21 
P11 1.18 2.41 

The change in IHG parameterisation (P9) has by far 
the largest impact for the space cooling demand of the 
base model, as shown in Table 7. However, the Morris EE 
sensitivity measures show that the change on IHG in 
combination with other parameters, reduce its relative 
importance relative to other parameters. For example in 
Fig. 3, the cooling set-point (P12) presents almost as large 
sensitivity on peak space cooling demand as IHG 
parameter, besides the much lower local sensitivity 
presented in Table 7. This emphasizes the importance of 
global SA, exposing the risks of creating misconceptions 
by only utilizing local sensitivity of parameters. 

5.1 Climate 

The analysis of the sensitivity measures according to 
different climate projections indicates that there is 
significant collinearity between the input parameters of 
the model and the type of weather or climate conditions 
considered. It is concluded that for future climates, the 
annual space cooling loads will be even more sensitive to 
IHG (P9) and control cooling set-points (P12). The peak 
space cooling demand will be significantly more sensitive 
to the ventilation rate (P10). Additionally, the sensitivity 
to IHG and cooling set-point are only slightly higher, so 
the ventilation rate will present the largest sensitivity to 
the peak demand in the future. 

The predicted change in annual and peak space 
cooling demand is substantial, for all of the climate 
scenarios considered, being 76% to 287% larger for 
annual and 8% to 61% larger for peak demand. This level 
of change is in accordance with previous research on the 
implications of CC for UK office buildings [18]. 
However, the sensitivity of the model to the alteration of 
input parameters according to the Morris EE method for 
the baseline climate, have shown levels of change five 
times larger than the change verified analysing the 
different climate scenarios on the base model. Jenkins et 
al. [8] have also shown that design mitigation measures 
can completely overcome the impacts of CC for annual 
cooling requirements. However, there is little 
understanding of how design changes rather than 
mitigating, could reinforce or even exacerbate the scale of 
further demand, especially peak cooling demand. 

The research findings of this paper should be used 
with caution, as there are risks of extrapolating the 
findings outside the simulation conditions tested. The 
research was conducted using a unique physical model 
only looking on the space cooling demand. Therefore, it 
does not consider the interaction of the HVAC system, of 
the building envelope and consequential effects on the 
final energy demand for the HVAC system. Similarly, in 
this paper, only EE methods were used to assess the global 
sensitivity of the model. Sensitivity results from 
additional alternative methods are important to reinforce 
the confidence and the coherence of the modelling 
approach, as emphasized by Clarke and Hensen [32]. 

As the analysis is conducted on a single floor building, 
with simplified geometries and configurations, the 
extrapolations of these findings to more complex 
buildings should be made carefully, namely to building 
configurations with multiple floors and significantly 
different configurations. Moreover, the simulation set was 
performed using a unique algorithm for the model 
calculation. It is known that some of the calculation 
assumptions on heat transfer processes, such as  
convection, radiation, conduction or heat balances may 
have implications for the results, as assessed in [33,34].  

Future research work should analyse the implications 
of multi-storey buildings models, and analyse further the 
implications of the collinearity of parameters with 
different sensitivity methods. It would be important to 
assess the effect of the ground effect in the results, not 
only by comparing the demand with models with multiple 
floors, but also evaluating the impact of different 
assumptions for the heat ground energy transfer. 

6 Conclusions 

This paper has enabled the quantification and ranking of 
the implications of the different input parameters in the 
space cooling demand of office buildings. Moreover, this 
has enabled the quantification of the potential impacts of 
CC on the space cooling demand of offices, and how the 
sensitivity of the different parameters will evolve among 
the different climate projections.  

Firstly, the implications for annual space cooling 
demand will be significantly larger than for the peak 
demand. On average, the rate of increase for annual 
demand is five times larger than for the peak demand. 
Secondly, it is assessed that future climates, by 2080s, 
may cause up to 287% and 61% increase over the current 
baseline scenario, respectively for annual and peak space 
cooling demand. However, the variability of the space 
cooling demand is much larger (up to five times) only due 
to changes in the input parameter assumptions. This 
reinforces the importance of attentively assessing the 
different options for operation and design, during the 
building design project phase. 

Finally, it is possible to conclude that IHG (P9) is the 
input parameter with the largest implications for the 
annual space cooling demand, being followed by the 
control set-point temperature (P12) and the ventilation 
rate (P10). Similarly, for the peak demand, these 
parameters are ranked in the same order of importance 
using current scenarios. Additionally, it is concluded that 
in future climate scenarios, the sensitivity on peak 
demand relative to current baseline climate scenario, 
relative to the main input parameters will be larger, 
particularly the ventilation rate (P10). However, for the 
annual demand, the IHG (P9) and cooling set-point (P12) 
will have much larger implications whilst ventilation 
(P10) and infiltration rates (P11) will have smaller 
influences. 

The research findings of this paper should be used 
with caution, as the simulation conditions proposed by the 
analysis present several limitations. For example, using a 
unique single floor physical model does not enable 
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analysis of the final energy demand of the HVAC system. 
In addition, the analysis does not explore the effect over 
multiple-storey buildings, the effect of different ground 
floor conditions or different calculation algorithm 
assumptions. Similarly, only using the EE method does 
not enable evaluation of the collinearity effect of the 
parameters, and comparison of sensitivity levels using 
other global methods. Finally, the climate change scenario 
considered to compare the change parameters sensitivity 
is extreme, and may be unlikely to occur. Therefore, the 
plausibility of this scenario to occur is small, and it should 
not be considered as the estimation of a likely future 
system performance.  

In the future, it is intended to extend the analysis of the 
CC impacts to archetype models that also analyse the 
implications for the final energy demand for the cooling 
demand of buildings, considering several different HVAC 
system options. Additionally, the implications of different 
algorithm calculation methods will be evaluated, together 
with further design and operation parameters important 
for the final energy and space cooling demand of office 
buildings. These may include alternative cooling methods 
and measures to minimise cooling e.g. solar shading or 
passive cooling strategies. Different global SA methods 
will be used to further assess the coherence of the analysis. 

Simulation Data and Model 

The necessary data and models to execute the analysis 
presented are available at: 

https://github.com/vascozeferina/CLIMA2019 
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