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Abstract. One of the possible ways to improve balance between building energy consumption and 

occupant thermal comfort in existing buildings is to use simulation-assisted operation of HVAC 

systems. Simulation-assisted operation can be formulated as a type of operation that implements 

knowledge of future disturbance acting on the building and that enables operating the systems in such 

a way to fulfill given goals, which in nature can often be contradictory. The most important future 

conditions on building energy consumption are weather parameters and occupant behavior and 

expectations of thermal environment. In order to achieve this type of operation, optimization methods 

must be applied. Methodology to create HVAC system operation strategies on a daily basis is 

presented. Methodology is based on using building energy performance simulation software 

EnergyPlus, available weather data, global sensitivity analysis, and custom developed software with 

particle swarm optimization method applied over the moving horizon. Global sensitivity analysis is 

used in order to reduce number of independent variables for the optimization process. The 

methodology is applied to office part of real combined-type building located in Niš, Serbia. Use of 

sensitivity analysis shows that the reduced number of independent variables for the optimization 

would lead to similar thermal comfort and energy consumption, with significant computer runtime 

reduction. 

1 Introduction 

Building energy performance modeling and simulation 

represent very powerful and useful method in all stages of 

building lifecycle. Most of the tools which are used 

nowadays and are known as BEPS (building energy 

performance simulation) software, were developed for 

use in the design (pre-construction) phase, and allow, 

among other benefits: comparison of different 

architectural concepts [1-5], comparison between 

different construction materials [6-7], selection and 

comparison between various HVAC systems [8-11], 

selection of proper RES available [12-13] and also as a 

support for policy making [14-15]. 

Numerous researches have shown that there are huge 

discrepancies between simulated and measured energy 

performance [16-18], even for buildings where some of 

the BEPS tools were used in the design phase. This 

“performance gap” can decrease confidence in using 

BEPS and must be properly addressed, especially if the 

tools are going to be used for improving energy 

performance of the existing buildings. The only way to 

eliminate or to decrease the “performance gap” is to 

calibrate building energy model, i.e. to adjust inputs in the 

model in such a way that simulation outputs and measured 

values are satisfyingly close [19-21]. Since energy models 

often have several hundreds and thousands of input 

variables, it is clear that obtaining calibrated model 

manually is very hard (if possible at all), so the use of 

statistical and analytical methods is the only way [22-23]. 

Once calibrated, energy model of the existing building 

can be used for further research. 

Over the last years, possibility to improve building 

energy performance by improving operation of existing 

HVAC systems though implementation of optimal 

operation strategies is recognized [24-26]. When using 

BEPS for defining optimal strategies simulation-assisted 

operation is achieved. One of the techniques applied 

frequently for simulation-assisted operation improvement 

is model-predictive control [27-28] which allows 

integrating prediction of future disturbances that will act 

on the building (such as weather [27, 29-31] and 

occupancy [32]), possibility to use building thermal mass, 

possibility to put constraints on inputs and outputs of the 

optimization process etc. Optimal values are determined 

by applying moving horizon approach [29, 33] where 

optimal values are implemented only in first part of the 
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prediction horizon, and the process repeats while shifting 

forward in time. 

The main drawback of using BEPS for simulation 

assisted approach is in large number of independent 

variables for the optimization process, which leads to 

significant computer runtime due to the fact that BEPS 

have incorporated high-order white-box models of the 

underlying physical process that occurs in the building 

and its systems. 

One of the possible ways to reduce computer runtime 

is to apply global sensitivity analysis (fig 1) in order to 

reduce number of independent variables for the 

optimization by selecting only variables which have 

biggest influence on one or several elements of the cost 

function [34].  

In this paper, sensitivity-based simulation-assisted 

approach is shown and compared to the classical 

simulation-assisted approach for the HVAC systems 

serving building located in City of Niš, Serbia, by 

applying moving horizon optimization. Model of the 

building is created by using EnergyPlus [35] which is also 

used in all stages of this research. 

 

Fig. 1. Sensitivity analysis workflow. 

2 Methodology  

Creating energy model of the existing building besides 

describing building geometry, construction materials 

used, HVAC and other installed systems has to include 

the description of building usage through defining 

patterns (schedules) of occupancy and number of 

occupants, schedules of artificial lighting systems use, 

schedules of electrical appliances and equipment use and 

the most importantly, through proper description of 

existing control systems installed in the building. Most 

sophisticated BEPS, like EnergyPlus, allow real 

representation of common HVAC control systems by 

defining: 

• Setpoints of the controlled variables (zone air 

temperature, relative humidity etc.) 

• Availability of installed HVAC systems and 

components 

• Order of HVAC systems and components running 

• Control laws implemented in HVAC systems (outside 

temperature offset control – heating curve, fresh air 

intake through damper positions etc.) 

Modelling sophisticated controls like optimal and 

supervisory is hard within the simulation tools itself so 

some form of external evaluation and co-simulation 

approach are being used. These controls require models 

of the controlled process and represent model based 

control. Typical goal of the optimal control is to reduce 

energy consumption without reducing occupant thermal 

comfort. This control can be realized either as offline 

(system operation is optimized externally) or as online 

(system operation is optimized in real time thus 

incorporating BEPS in the actual control loop of the 

building).  

The purpose of using BEPS for simulation-assisted 

operation can be divided in two directions: 

• For development and evaluation of new controls (model-

based dominantly) created with other tools and 

techniques [27, 29], 

• For development of general environments and 

methodologies around the tool for either online [36] or 

offline [31, 36] applications. 

This concept is generally implemented as supervisory 

level of control, with the cost function representing single 

variable or combination of several variables: 

• Energy consumption [36-37], 

• Occupant thermal comfort [36-38], 

• Operation costs [39-40], 

• Time when thermal comfort is unsatisfied [41]. 

Considering occupant thermal comfort, usually 

operative temperature, zone air temperature, PMV index 

and PPD index are selected as output variables. 

Optimization methods used for simulation-assisted 

approach are numerous with PSO [36, 41-42] and genetic 

algorithms [43, 44] being the most frequent. 

Optimal operation strategies are developed in order to 

minimize building energy consumption while preserving 

occupant thermal comfort in given boundaries, during 

occupied period. The same approach can be used for daily 

operation strategies with different cost functions. Particle 

swarm optimization (PSO) algorithm was selected and 

custom optimization environment around EnergyPlus was 

developed. The process of determining optimal operation 

strategies of existing HVAC systems was realized in the 

form of offline optimization and is illustrated in figures 2 

and 3. It consists of optimization algorithm, simulation 

tool and the building itself in which the results are 

implemented. The building or the building model is used 

as feedback for the next planning horizon (thermal history 

of the model).
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Fig. 2. Moving horizon for optimization. 

 

Fig. 3. Offline optimization process.

 

Independent variables for the optimization process are 

all physical parameters on which user can act in the 

building systems, whether these parameters being local 

(zone air temperature setpoint by thermostatic valves 

postition or some indoor air thermostats) or central 

(outdoor temperature compensated supply water 

temperature, system availability within some periods of 

time, mass flow of available energy carriers etc.). 

Planning horizon is of adjustable length and can span 

from one hour up to three days (typical length of short-

term weather forecasts). The control horizon is shorter 

than the planning horizon and can range from 1h up to 

24h. Each day of the planning horizon is divided in several 

blocks (figure 4) during which independent variables 

remain constant. Typically, each day should be divided in 

at least two blocks representing occupied and unoccupied 

period. Further division with shorter durations is allowed 

also in this environment. 

 

Fig. 4. Planning horizon spanning 72 hours. 

In the optimization algorithm, vector of independent 

variables is generated with each variable placed in the 

exact place of energy model. With this vector, the 

simulation is started externally from the optimization 

environment with proper weather file (which can contain 

either actual climatic weather data or the forecasted data 

with data treated either as deterministic or stochastic). 

After simulation completes, from the output file necessary 

data for calculating cost function are extracted. Based on 

cost function, new vector of independent variables is 

generated and the process repeats until one of the exit 

criteria is being reached (either time for the runtime or 
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change in cost function through consecutive generations 

of input vectors). After satisfying exit criteria, optimal 

values are implemented in building or become part of 

model thermal history, and the process starts for the new 

planning horizon, shifting forward in time for the length 

of control horizon. The optimization environment was 

realized to use multi-thread processing enabling use of all 

computer cores simultaneously. 

If the planning and control horizons are divided in 

large number of blocks, huge number of independent 

variables (several hundred variables for the basic HVAC 

systems) for the optimization process are necessary to find 

and the computation runtime can extend significantly. 

One of the ways to prevent excessive computation time is 

to constrain computation time to reasonable measure, 

which can lead to unsatisfying results, especially for 

online optimization. On the other hand, for offline 

optimization, computation time is not of greatest 

importance, but using significant computational resources 

can increase costs for developing new controllers. This is 

why researchers tend to use simpler white-box or black-

box models and to use BEPS models only for controller 

evaluation. There is also a possibility to use sensitivity 

analysis in order to reduce number of independent 

variables for the optimization process. The main idea is to 

incorporate process shown in figure 1 in processes shown 

in figures 2 and 3, i.e. to systematically reduce number of 

independent variables by applying global sensitivity 

analysis. Inputs for the sensitivity analysis are all 

independent variables after defining planning and control 

horizons (subdivision in blocks of occupied and 

unoccupied periods), while the outputs are dependent 

variables which form the cost function. Inputs which are 

shown to have significant impact on the outputs (the most 

influential on cost function) become independent 

variables for the optimization process while all other 

inputs remain on initial values. The optimization process 

follows the procedure described above with sensitivity 

analysis run at the beginning of each new planning 

horizon. This process is illustrated in figures 5 and 6.

 

Fig. 5. Moving horizon with sensitivity analysis. 
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Fig. 6. Sensitivity analysis based offline optimization.

2.1. Reference building and application of the 
methodology 

The described processes of determining daily optimal 

operation strategies with minimization of energy 

consumption while maintaining thermal comfort are 

applied to the office part of the Feniks BB company 

building shown in figure 7 (more details about the 

building geometry, constructions used and HVAC 

systems and controls can be found in [34]) The building 

is located on the outskirts of Niš, the largest city in 

Southeastern Serbia. 

 

Fig. 7. Office part of the building. 

Most of the office part of the building is equipped with 

radiator heating system (except offices No1, No2 and 

No3) which is the main heating system in whole building. 

In addition, office part (all offices) is equipped with 

constant air volume air conditioning system as the sole 

system for cooling, which can also be used for heating this 

part of the building. Radiators are equipped with 

thermostatic valves for local individual control. In 

addition, central control is implemented in both radiator 

and air conditioning system with some important control 

features: supply water temperature control is realized as a 

function of outside air temperature (4-point heating 

curve); there is a possibility to correct supply water 

temperature within predefined periods of day; in air 

conditioning system supply air temperature control is 

implemented based on exhaust air temperature; air 

conditioning start and stop time can be defined on daily 

basis, as well as airflow within this system by using 

frequency drive. 

Building energy model was calibrated with values 

from supervisory control and data acquisition system. The 

planning horizon is set to two days, while the control 

horizon is one day. Each day is divided in four blocks 

representing: unoccupied period before occupants arrive 

(00:00 – 06:00); occupied period 1 (06:00 – 11:00); 

occupied period 2 (11:00 – 16:00); unoccupied period 

after occupants leave (16:00 – 24:00). Based on installed 

control systems, 99 independent variables were identified 

for the described planning horizon: airflow in air 

conditioning system (1 independent variable); supply 

water temperature correction (8 variables); air 

conditioning system availability (8 variables); supply air 

temperature setpoint (8 variables); radiator availability in 

offices (32 variables for total of 5 offices); radiator 

setpoint (35 variables, unoccupied periods before 

occupant arrival have the same value); required heat 

capacity of the heating substation (7 variables). The cost 

function: 

min𝐸 = ∑ 𝐸𝐷𝐸𝐿(𝜏)

𝜏=𝜏𝐻𝑃

𝜏=1

 (1) 

Has an ε constraint implemented : 

−𝜀 < 𝑇𝐶𝐹 < 𝜀 (2) 

where: 

EDEL(τ)- delivered energy to the building in every hour of 

the planning horizon, output from simulations 

ε – constant related to prescribed values of PMV 

according to [45] and was kept at 0.5 

TCF – number of people weighted thermal comfort 

function which is calculated as: 

   
    

 
, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110409)

201
E3S 111
CLIMA 9

404 455 

5



 

𝑇𝐶𝐹 =∑(min 𝑃𝑀𝑉𝑗) ×
𝑁𝑗

𝑁𝑡𝑜𝑡

𝑗=6

𝑗=1

 (3) 

with  

j – index of the occupied office, 

minPMVj – minimum value of PMV index in office j 

during occupied periods of the planning horizon, output 

from simulations, 

Nj – number of occupant in office j (1 in Director office, 

2 in Accounting office, 2 in Secretary office, 2 in Office 

No3, 4 in Office No4, 3 in Office No5), 

Ntot – total number of occupants in the office part of 

building. 

The procedure for obtaining optimal operation 

strategies was run for the period 06.02.2017 – 10.02.2017 

assuming weather forecast to be perfect (deterministic 

approach using actual weather data from the location 

itself, rather than using forecasted data) with population 

size set to 1000, number of generations set to 50 without 

exit criteria defined.  

On the other side, the procedure was expanded by 

adding global sensitivity analysis as the first step. In 

sensitivity analysis (Monte Carlo), each of the 99 

identified variables was assigned probability distribution 

function and range (uniform for continual and discrete 

with equal probability for binary variables) and Latin 

Hypercube Sampling with 1500 values was performed in 

software Simlab 2.2. This resulted in the fact that at the 

start of each planning horizon 1500 simulations were run 

in order to identify input variables which effect either 

energy consumption or TCF function during the planning 

horizon. Standardized regression rank coefficient was 

selected as sensitivity index with threshold value of 0.05. 

After the sensitivity analysis, only variables with SRRC 

greater than threshold value became independent 

variables in the optimization process, while all others held 

their initial values. In this case, population size was set to 

500 with same number of generations and also without 

exit criteria. 

The simulations were run on a 24-core Intel Xeon 

working station with 32GB of RAM memory.  

3 Results and discussion 

The PMV variations in case with full number of 

independent variables (99) for the selected periods is 

given in figure 8, while the PMV variation for the same 

period but with application of sensitivity analysis is given 

in figure 9. Difference between PMV variations in 

selected office is shown in figure 10. Figures 11 and 12 

illustrate difference in energy consumption and optimized 

operation parameters.

 

Fig. 8. PMV variations in all offices with full number of independent variables. 
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Fig. 9. PMV variations in all offices with reduced number of independent variables. 

 

Fig. 10. PMV variations in office No4. 
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Fig. 11. Building heating energy consumption and supply water temperature correction. 

 

Fig. 12. Air conditioning system heating energy consumption and percentage of the design airflow.

Computation time for both cases and the difference 

between the two are given in table 1. 
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Table 1. Computation times and difference 

Planning 

horizon 

Full 

number 

[h] 

Reduced 

number [h] 

Difference 

[h] 

06-07.02 43.0 14.8 28.2 

07-08.02 33.2 15.0 18.2 

08-09.02 55.8 15.1 40.7 

09-10.02 55.2 15.5 39.7 

10-11.02 55.5 12.4 43.1 

Optimal operation strategies with full number of 

independent variables resulted in energy consumption of 

4146 kWh for thermal comfort constraint set to ε = 0.5. 

Energy consumption in the air conditioning system 

accounts for 35%. 

Sensitivity analysis had shown that energy 

consumption and/or thermal comfort function were 

sensitive to changes in inputs related to air conditioning 

system (airflow, system availability and supply air 

temperature setpoint), required heat capacity for the 

heating substation and partially to changes in radiator 

availability. From the total of 99 variables, for most 

planning horizons only 33-36 were influential and were 

treated as independent variables. 

Furthermore, building energy consumption reduced 

by 5.02% (from 4146 kWh to 3937 kWh). By comparing 

required heat capacity of the heating substation and 

supply water temperature correction factors, it is seen that 

optimal values for correction factors were on the upper 

limit of the range (20% increased from the calculated 

supply temperature) in both cases, with shorter periods of 

heat supply intermittency for the sensitivity analysis 

approach, which leads to the conclusion that building 

thermal mass was better used with this approach. The 

latter statement is proven taking into consideration energy 

consumption within the air conditioning system as well as 

change in airflow within the system, since this energy 

consumption was reduced to 24% of total energy 

consumption for heating. 

For approach with sensitivity analysis as the first step, 

the following was achieved: 

• Resulting PMV in all offices was close to the values 

achieved with full number of variables, while for some 

there is a slight improvement, 

• Energy consumption in air conditioning system was 

reduced due to building thermal mass usage and as a 

result of increased radiator heating, 

• There is slight reduction in building energy 

consumption, 

• Operation parameters for both available systems (supply 

water temperature correction factor, air flow and supply 

air temperature setpoint) are close to those obtained with 

full number of independent variables. 

The main reason for this lies in the fact that reduced 

number of independent variables led to smaller population 

size in optimization process which further led to faster 

finding solutions that satisfy thermal comfort constraint 

thus having more generations for energy consumption 

reduction in the process. In addition, sensitivity analysis 

approach resulted in significant computation time 

reduction. 
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