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Abstract. In the field of preventive conservation, a main goal is the conservation of cultural heritage by 
establishing an appropriate indoor climate. Especially in applications with limited possibilities for the usage 
of HVAC systems, an optimization of the control strategy is needed.  Because the changes in temperature 
and humidity are slow, the usage of predictive controller can be beneficial. Due to the availability of already 
gathered data, data driven models like artificial neural networks (ANN) are suitable as model. In this paper 
four different approaches for optimizing the control strategy regarding the requirements of preventive 
conservation are presented. The first approach is the modelling of the indoor climate of a building using an 
ANN. As further improvement and second application the adaption of a weather forecast to a local forecast 
is shown. Since the building stock has the biggest influence on the linkage between outdoor and indoor 
climate next to the air change rates, an ANN model for a building’s wall represents the third application. 
Finally, the potential for reducing the need for computational power by using an ANN instead of a non-
linear optimization for the predictive controller is presented.  

1 Introduction 
The protection of objects of cultural heritage for future 
generations is the main goal of the preventive 
conservation, whereby the methods can be classified in 
the fields of restauration and conservation. In the field of 
conservation, methods for reducing or eliminating 
chemical, physical or biological damage are investigated. 
These types of damages are often caused by 
unfavourable states of the surrounding air temperature 
and humidity. Therefore, the control of temperature and 
humidity, summarized as indoor climate, is an important 
task of preventive conservation (see [1]). 
Assuming only minor changes in air pressure, the 
humidity in materials and air can be assumed as linear to 
each other, so just the changes in relative and not 
absolute humidity should be considered. 
The possibility to control the indoor climate depends on 
the case of application, respectively on the building 
stock and available HVAC systems (see [2]). The most 
limited scenarios are often found in historical buildings, 
where the building stock itself represents the cultural 
heritage and therefore shall not be altered.  
In order to effectively control the indoor climate in such 
an application, a simple control strategy only using the 
current climate states is often not adequate. Furthermore, 
rapid fluctuations of the temperature and humidity 
should be avoided (see [3]). Therefore, a planning 
strategy (predicting) for the implemented controller 
seems to be useful. In order to implement a predictive 
controller, a model of the application (e.g. building) is 
needed. For a correct modelling of the climate behaviour 
(e.g. for the use in a modelling software), often expert 
knowledge is required. In addition, tests for materials or 
factors like air change rates or isolation of windows and 
doors are needed. Using such a complex building model, 
the computational power needed to calculate future 
states is often relatively high. 

Due to the importance of the indoor climate, in a lot of 
applications the climate states are logged using thermo-
hydrographs or more modern digital temperature and 
humidity sensors. This gathered data may be used to 
generate a data driven model of the building behaviour. 
By using such a data driven model, e.g. an artificial 
neural network (ANN), in a predictive controller, the 
requirements of preventive conservation could be 
fulfilled effectively. 

1.1 Preventive Conservation 

Depending on the materials of the building and the 
materials of the objects of cultural heritage, which 
should be protected, different climate states may appear 
suitable for the definition of stationary and dynamic 
demands. 

 

Fig. 1. Appropriate climate states  
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1.1.1 Stationary demands

For the temperature the stationary goals may be defined 
rather simple. Damages caused by physical, chemical 
and biological processes are less pronounced at lower 
temperatures, up to a lower boundary where an 
additional damage by frost may appear.  
The demands for humidity are more specific regarding 
the different materials. For example, the optimal relative 
humidity for cellulose is between 30 and 50 % rH, 
minerals should be stored between 0 and 30 % rH (see 
[4]).  
For the considered case of application in a historical 
building built of sandstone containing mostly canvas and 
wood, the appropriate climate ranges are shown in the 
humidity over temperature diagram in figure 1. 

1.1.2 Dynamic demands

A difference in the temperature of a material and its 
surrounding air leads to an energy transfer until an 
equilibrium is reached. If the environment temperature 
changes, a heat flow at the material surface will appear 
again and continue into the deeper layers of the material 
until a new equilibrium is reached. In adverse cases or 
over an extended time period this energy transport leads 
to physical damage. This indicates that the above 
mentioned changes should be reduced to a minimum.  
A similar effect can be noticed for the humidity. A 
change in the humidity of the surrounding air leads to a 
moisture (and therefore material) flow until an 
equilibrium between the material and the environment is 
reached.  
The maximum values for the rate of daily or hourly 
changes of temperature and humidity dependent on 
materials can be read in guidelines and standards (e.g. 
[3] and [5]). Since in reality, historic buildings are often 
equipped with limited HVAC systems, the minimization 
of the rate of change is considered by the controller 
presented here.. 
 

1.2 Important properties of artificial neural 
networks

 
Due to the complexity of ANNs, only the fundamentals 
for the cases of applications described in this paper will 
be shortly presented in this chapter. ANNs are based on 
the biological model of a nerve system (see [6]). Several 
layers of neurons are connected to a network. Signals 
into the system are forwarded as input to a neuron, at 
which the signals are weighted and processed by the 
activation function of the neuron to generate an output 
(see fig. 2). The main properties of a neural network are 
given by its structure. For the cases of applications 
presented here, a division of the networks in two classes; 
feedforward and recurrent networks, seems to be useful. 
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Fig. 2. Schematic of a single neuron
 

1.2.1 Feedforward network

In a feedforward network structure, the signal is passed 
through the network in one direction. A typical example 
is the perceptron shown in fig. 3. 
The signal is first processed in the input layer, passed to 
the hidden layer and then passed to the output layer. By 
using a derivable activation function for each neuron, the 
training of the network can be done by a 
backpropagation algorithm (see [7]), which adjusts the 
weights in the network by comparing the difference 
between predicted and training data. The order of the 
data is irrelevant. 
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Fig. 3. Perceptron (feedforward network)
 

1.2.2 Recurrent neural networks

In a recurrent network, signals may be passed backwards 
in the structure. These connections can be seen as a kind 
of memory. Past states influence the current state of the 
network. A recurrent network is shown in fig. 4. 
Since the order of data is relevant in recurrent neural 
networks, an adapted backpropagation algorithm is 
needed. Another option is the usage of non-linear global 
optimization methods to train such a network (see [8]).  
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Fig. 4. Recurrent neural network
 
 

2 Methods

The functionality of an ANN is mainly determined by its 
structure. Different methods for evaluating and finding a 
suitable network structure are needed.  

2.1 Criteria for model quality

To train an ANN the used data has to be divided in 
different data sets. A training set is used to actually tune 
the weights within the network, a validation set is used 
to control the training process and a test set is used to 
evaluate the trained network. 
A classical problem in using ANNs is the so-called 
overfitting. This problem occurs when the network is 
trained too much, which results in the inability to 
generalize the problem by creating a kind of look up 
table for the training data. To reduce this problem a 
validation dataset may be used. The data of the 
validation data set is not used to train the network, but to 
control the outputs for these data points. So an unbiased 
evaluation of the network can be done. An indication for 
overfitting is a growing error in the validation data. So 
the right choice for the different datasets is quite 
important. 
Finally, the trained model is evaluated with the test data 
set and a comparable error maybe calculated. Typically, 
the normalized root mean square error (NMSE) is used 
[9].  

2.2 Determining of feedforward Network 
structures

For applications using feedforward networks a classical 
approach is pruning. To do so, a network which should 
be clearly bigger than needed for the problem is used as 
starting point. By incremental reducing the size of the 
network until the smallest network which can solve the 
problem is reached, the best results are found. Different 
approaches regarding the network starting sizes are 
reviewed in [10]. 
A network with one hidden layer is able to solve 
problems which can be divided by a hyperplane and 

arbitrary problems may be solved with two layers see 
[11]. 

In consequence of the more complex training of 
recurrent networks, pruning approaches are much more 
time consuming for this kind of network. Furthermore, a 
bottom up approach may be used if the recurring 
network structure is not able to be determined by the 
problem formulation. 

 2.3 Determination of Network structures using 
neuroevolution

To determine the optimal network structure (for 
recurrent and feedforward structures) neuro-evolutionary 
methods may be used (see [12]). The presented approach 
is based on the NEAT algorithm (Neuro Evolution of 
Augmented Topologies). Using this algorithm every 
connection between two nodes within the network is 
represented by a gene sequence as shown in fig. 5. 
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Fig. 5. Gene sequence of connections
 
This figure also represents the first generation of a 
network with only one neuron. The gene sequence 
contains, additional to the classic network, information 
(weight, start, end), an activation status and an 
innovation number.  
One set of gene sequences is called an individual. 
The evolutionary component is implemented by 
mutation, recombination and selection of a number of 
individuals, called a generation. 
In order to augment the network, random changes in the 
gene sequence are made and new sequences are added 
by chance; this is the mutation of an individual. The 
innovation number is used to determine if a mutated 
gene sequence already emerged. 
By combining the gene sequences of two or more 
individuals, new individuals are created by 
recombination. 
The selection is the determination of the individuals with 
the best model quality considering new emerged 
individuals.  
For a more detailed description of the method see [13]. 
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3 Applications

All approaches aiming at optimizing the control strategy 
in regard to preventive conservation while reducing the 
needed computing power.

3.1 Temperature and humidity model

The main model needed for a predictive control of the 
indoor climate is the model of the buildings indoor 
climate behaviour influenced by the outdoor temperature 
and humidity. At first, the climate properties of the room 
are examined to build an appropriate model using an 
ANN. The case of application represents a room in the 
castle “Schloss Fasanerie” in Germany. The actuators in 
this application are limited to radiators and forced 
ventilation. No humidifiers or dehumidifiers are used. In 
a timespan of two years the indoor and outdoor 
temperature and humidity were logged and are available 
for the model design. Before an approach with an ANN 
was done, the first models as well for temperature as for 
humidity were built based on a Cauer Modell (see [14]) 
shown in fig. 6.  
 

Fig. 6. Simplified Cauer model
 
Due to the storing properties of the building stock, a 
recurrent network was chosen, whereby the recurring 
connections are limited to the last layer of the hidden 
layer (likewise r1 to ri in fig. 3). By constraining the 
connections, an adaption of the backpropagation 
algorithm could be done to train the network (see [15]). 
To reduce the problem, two separate networks were 
trained for humidity and temperature, whereby these 
networks only differ in the output but not in their input 
(temperature and humidity values are representing the 
input of both networks). 
A one step prediction with a sampling time of 15 min 
was implemented. For a longer horizon, new data for the 
outdoor temperature and humidity are needed. This will 
be considered in the next section. 
For comparison purposes, a fitted Cauer model and a 
feedforward network were also fitted to the data. 
 

Table 1. NMSE for relative humidity in different model types 

Model Cauer feedforward recurrent 

NMSE rH 0,84 0,22 0,079 

 

A graph representing the predicted humidity as well as 
the test data is shown in fig. 7. 

 

Fig. 7. Predicted humidity with recurrent ANN

3.2 Local adaptation of a weather forecast 

To predict the future indoor climate states, the future 
outdoor climate states, which can be obtained by a 
weather forecast, are needed for the simulation. The 
prediction resolution size of such a forecast cell differs 
from 1 to 15 km of edge length. But even in the best 
resolution, local differences like shadowing cannot be 
considered in detail in a usual prediction. 
To build the adaption for a local weather forecast, the 
data locally measured and the data obtained by the 
commercial weather forecast were gathered for half a 
year (see [15]). The forecast was updated every hour 
with 3-hour prediction steps up to 5 days. The absolute 
error is shown in Fig. 8. 
For the application considered here, a prediction horizon 
extending 9 hours is not suitable due to the constraints in 
actuators and the building’s coupling to outdoor climate 
since the impact extending this time is marginally. 
 

 

Fig. 8. Absolute error in weather forecast
 
To reduce the model complexity, the forecast adaptation 
of temperature and humidity are separated. In order to 
find the suitable ANN structures, the neuroevolution 
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method was used, which resulted in two networks with 
two hidden layers. The network for temperature 
adaptation contains 6 neurons in the hidden layers, the 
network for humidity adaptation 5 neurons in the hidden 
layers. A comparison of the results of the ANNs and 
original forecast are shown in table 2.  

Table 2. NMSE for weather forecast and ANN adaptation over 
prediction horizon 

 3h 6h 9h 

Original 
rH 0,1205 0,1624 0,1670 

ANN     
rH 0,0592 0,0585 0,0695 

Original  
T 0,0953 0,1068 0,0964 

ANN       
T 0,0511 0,0623 0,0691 

 

3.3 Modelling building parts  

Due to the influence on indoor climate, one approach 
pursued to model the dynamic behaviour of wall 
segments using shallow neuronal networks. In the case 
of application considered here, the function of a state 
observer for the hygro-thermal conditions in different 
depths of the wall is realized. So, an ANN has to be 
trained, that is able to predict the current temperature and 
humidity at the positions of the sensors in the wall, based 
on the present data from the sensors on the wall surface 
and the predicted states from the last sampling instance. 
In the resulting structure, the ANN implements a 
functionality in analogy to the A and B-matrices of the 
Luenberger-observer (see [16]), where the measured 
surface conditions can be interpreted as the system 
inputs. A training dataset was created, based on the 
recorded sensor values, where the input table consists of 
the current reading of the surface sensors and the values 
of the sensors embedded in the wall sample from the 
previous measurement instance. The output dataset 
consists of the current interior measurements in the same 
time span as the surface measurement. Thus there are 16 
input data columns, consisting of the humidity and 
temperature measured in a distance of 10mm between 
the wall and the sensors, the temperature directly at the 
surface at both sides of the wall and the 5 temperature 
and humidity readings from different depths of the wall 
element. The output data size is 10, consisting of the 5 
humidity and temperature pairs mentioned before. Due 
to the slow nature of the hygro-thermal processes of the 
examined system, the datasets are interpolated to a 
temporal resolution of 10min. This moreover drastically 
reduces the computational efforts for training the ANN, 
compared to original sampling rate of 1min. The training 
process was performed using the MATLAB neuronal 
network toolkit (see [17]). For the structure of the 
network determined by trial and error, 16 neurons were 

selected on the hidden Layer, since that yielded the 
lowest RMSE in the range between 10 and 16 neurons. 
The dataset was randomly partitioned into 70% training-, 
15% validation- and 15% test-data. The partitioning is 
feasible in that manner, since the net later only performs 
a one-step prediction. Besides the temporal integrity of 
the dataset is not violated during the learning process, 
because the input- and output data for a certain time step 
are stored in same column.

After the completion of the learning process the ANN 
was exported as a MATLAB-function for further 
investigation. To simulate the network, a MATLAB-
script was programmed, that, in a first step, initializes the 
system states to a known value, e.g. by interpolation 
between the surface sensors, proportional to the depth of 
the observed measuring point. The script then iteratively 
calls the function, containing the ANN, with the previous 
estimate and the current measurement of the surface 
sensors. 
Fig. 10 shows the behaviour of the actual system (s) and 
the simulated system model (m), realized by the 
neuronal observer, as they are affected by changes of the 
humidity on both sides of the examined wall sample, 
shown in figure m. As described in [18] one side of the 
wall is exposed to the conditioned space of the box, 
build for the test stand, while the other to the 
surrounding air. 

Fig. 10. Humidity response of the system (s) and the neuronal 
observer model (m) to external stimulations
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Fig 9. Structure of the resulting ANN
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Fig. 11. External stimulations by the surrounding air and the 
conditioned box

In the results of the simulation, shown in fig. 11, the root 
mean squared error between the model and the measured 
data is 1.33% for the worst and 0.55% for the best 
estimated state, which is within the accuracy of the 
sensors of ±2%. 

3.4 Model predictive control using ANNs

A model predictive controller uses a model of the 
process that shall be controlled to determine the optimal 
future actuator states. For this kind of application, the 
controller is using different ANNs as models in respect 
to the static and dynamic demands of preventive 
conservation using the implemented methods as shown 
in [14] and fig 12.   
 

Demands

ApplicationOptimization

Neuro-
evolutionANN

 

Fig. 12. Structure of Model predictive controller using ANN 
models
 
Summarizing, the optimization by using ANN models 
provides a suitable solution. Certainly the computational 
power needed to provide this solution is not practicable 
and furthermore adjustments within the system have to 
be considered in every sub-model. To enhance the 
system for these two factors, the optimizer itself will be 
replaced by an ANN, which results in a so-called “neuro 
controller”. This neuro controller is also build by the 
usage of the neuroevolution algorithm, but the genetic 
structure is enhanced by a gene sequence for the 
activation function of the single neurons. By doing so, 
the functional space of the network is extended to gain 
additional degrees of freedom. 
Right now, the obtained neuro controller is not tested on 
an actual application, but tested in a simulation done 
with TRNSYS. When the classic model predictive 

controller is using the ANN models directly trained at 
the same TRNSYS model, its performance is nearly as 
good as the neuro controller. But the real advantage is 
seen if there is a difference in the training data and the 
model, which in reality very easily may occur, by a 
changing environment, system or increasing sensor error. 
The results for the two controllers and an additional 
bang-bang controller in the simulation of a changed 
damp buffer in the room are shown in fig. 13. As set 
points 50 %rH and 20°C were used. 
 

 
Fig 13. Simulation of different controller types
 
 
Overall the neuro controller and the model predictive 
controller were able to improve the climate significantly. 
The maximal humidity and temperature were reduced 
while the fluctuations were held low. The reduction in 
fluctuations is shown in fig. 14.  
The peaks in fluctuations can be explained by the natural 
daily cycle in temperature and relative humidity. Overall 
the higher effort designing the controller paid off by a 
faster and still more flexible controller. 
In future work the optimization process for the neuro 
controller will be considered, as well as the building part 
model will be included in the model predictive controller 
as well as the neuro controller. 
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Fig 14. Fluctuation of controllers

4 Conclusion
In this paper different approaches for the usage of 
artificial neural networks in applications of preventive 
conservation are presented. In applications were data are 
already gathered in a significant time period, approaches 
using data driven models like ANNs may be used to 
reduce the simulation effort, in comparison to a building 
simulation, as well as the required expert knowledge. 
Even if this simulation is not suited for the optimization 
of the application, e.g. better fitted actuators or building 
materials, the rather simpler model can be used to 
develop a control strategy, which fulfills the demands of 
preventive conservation, despite the limitation of 
actuators. 
The advantages in using a recurrent network for a 
building model are shown in the first application. The 
usage of a feedforward network for adapting a weather 
forecast to local properties and for modelling the 
behaviour of building stock is presented in the second 
and third application.  
Finally, the improved control results of an MPC using 
ANNs and a neuro controller compared to a bang-bang 
controller are shown in the last application. The 
advantage of the neuro controller is the better 
generalization and lower computational power during 
operations compared to the MPC. 
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