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Abstract. The current methods for simulating building energy consumption are often inaccurate, and the 

error could be as large as 150%. Various types of occupant behavior may explain this inaccuracy. Therefore, 

it is important to identify an approach to estimate the impact of the behaviors on the energy consumption. The 

present study used EnergyPlus program to simulate the energy consumption of the HVAC system in an office 

building by implementing a behavioral artificial neural network (ANN) model. The behavioral ANN model 

calculates the probability of behavior occurrence according to indoor air temperature, relative humidity, 

clothing level and metabolic rate. The probability was used to predict energy use in 20 offices for one month 

in winter, spring and summer in 2018, respectively. Measured energy data from the offices were used to 

validate the simulated results. When a behavioral artificial neural network (ANN) model was implemented in 

the energy simulation, the difference between the simulated results and the measured data was less than 13%. 

Energy simulation using constant thermostat set point without considering occupant behavior was not 

accurate. Our further simulations found that adjustment of thermostat set point and clothing level by occupants 

could lead to 25% and 15% energy use variation in interior offices and exterior offices, respectively. 

1 Introduction  
In the United States, 41% of primary energy consumption 

occurs in buildings, mainly for maintaining a comfortable 

and healthy indoor environment. Current methods for 

simulating building energy consumption are often 

inaccurate, with error ranging from 150% to 250% [1]. A 

possible reason for the discrepancy could be from various 

occupant behaviors in the buildings. Therefore, it is 

important to identify an approach to estimate the impact 

of the behaviors on the energy consumption.  

 

The existing methods for exploring the effect of occupant 

behaviors on energy consumption and thermal comfort 

mostly based on surveys and numerical simulations. For 

example, Fabi et al. [2] studied the influence of thermostat 

setting point and window opening on indoor 

environmental quality and heating demand in residential 

buildings by using questionnaire surveys and logistic 

regression. Sun et al. [3] simulated numerically the impact 

of occupant behaviors on energy savings. Zhao et al. [4] 

used data mining and numerical simulations to identify 

the effect of occupant behaviors and schedules on office 

energy consumption. However, the questionnaires may 

not record all the information and the numerical 

simulations may not include all the information for 

producing accurate results. 

 

A survey on occupant modeling approaches in building 

simulations [5] showed that 66% of the researchers 

modeled the thermostat set point as a daily schedule, 

while another 16% used a constant for the entire year. 

Very few researchers have explicitly acknowledged the 

occupants’ interaction with the thermostats. Some 

previous studies tried to predict the energy consumption 

in commercial and residential buildings with various 

occupant behavior models, such as linear regression 

model [6], statistical model [7] and stochastic model [8]. 

However, a review paper [9] pointed out the 

oversimplifications used in the existing behavior models 

for energy simulation. At present, very few studies have 

used comfort-related occupant behavior models for 

energy simulation [10]. Therefore, the purpose of this 

study is to investigate the impact of occupant behavior on 

the energy use of HVAC systems with the use of an 

appropriate behavioral model. 

  

2 Methods  

To measure and simulate the energy use of the HVAC 

systems and study the impact of occupant behaviors on 

HVAC energy use, this investigation first collected data 

in 20 offices at Ray W. Herrick Laboratories (HLAB) 

building, Purdue University. We used the building 

automation system (BAS), data loggers and 

questionnaires to collect indoor environmental data and 

behavior data. Subsequently, and EnergyPlus program to 

simulate the energy consumption by the HVAC system. 

We validated the simulation results with the 
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corresponding measured data. Finally, we implemented 

the behavioral ANN model [11] into energy simulation 

program to simulate the impact of occupant behaviors on 

building energy use.  

2.1 Data collection in the HLAB building 
 

This investigation collected data from the HVAC systems 

in the 20 offices in the HLAB building at Purdue 

University. A half of the offices were multi-occupant 

student offices, and the rest were single-occupant faculty 

offices. Fig. 1 shows that the offices for data collection 

were located on the first floor and second floor of the 

three-story building. Eight offices located in the exterior 

zone and others located in the interior zone. The area of 

the offices was from 12.9 m2 to 21.0 m2. The height of the 

ceiling was 3.05m. The HLAB building used a variable 

air volume (VAV) system for heating and cooling. Each 

office had an independent VAV box and a thermostat 

(Siemens 544-760A) that enabled the building automation 

system (BAS) to control the air temperature in the room. 

The occupants could adjust the thermostat set point within 

the range of 18.3  to 26.7 . In the heating mode, the 

hot water valve opened, and the air from the air handling 

unit could be heated by the reheat coil in the VAV boxes. 

There was a damper in each VAV box to control the 

supply airflow rate. 

 

(a) (b) 

 
 
Fig. 1. Layout of (a) the first floor and (b) the second floor of 
the HLAB building.  

 
This investigation recorded the supply air temperatures, 

thermostat set points, damper positions, and room 

occupancies every five minutes. The lights in each office 

included ultrasonic and passive infrared sensors (Lutron 

LOS-CDT 500WH) on the ceiling. The lighting on/off 

status could signify whether or not the offices were 

occupied. There were temperature sensors (Siemens 

QAM2030.010) inside the diffusers in each office to 

monitor the supply air temperature, which was 43.3 5.5

 for heating and 15.5 2.8  for cooling. We used data 

loggers (Sper Scientific 800049) in each office to collect 

the room air temperature and CO2 concentration data. 

 

We also used a questionnaire to collect the seven-scale 

thermal sensation (-3 for cold, -2 for cool, -1 for slightly 

cool, 0 for neutral, +1 for slightly warm, +2 for warm, and 

+3 for hot), clothing level from the occupants when they 

were inside the offices, and when they adjusted the 

thermostat set points and clothing levels. The time when 

the occupants arrived at and left the office was also 

recorded.  

 

Note that all data collection in this study was approved by 

Purdue University with Institutional Review Board 

Protocol #1704019079. 

 

2.2 Supply air flow rate calculation 

We calculated the supply airflow rate by using the 

measured CO2 concentration in each office with a 

completely mixing assumption. If an office is not 

occupied, the indoor CO2 concentration follows the 

equation: 

                                  � �0� �i
i

dCV C C Q
dt

  (1) 

where V is the room volume, iC  is the indoor CO2 

concentration, t is time, 0C  is CO2 concentration of supply 

air, Q is the supply air flow rate. The CO2 concentration 

of return air was equaled to that in the indoor space iC . 

By solving Eq. (1), we obtained 
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where ,i initialC is the initial indoor CO2 concentration and 
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�  was proportional to the time t. By 

measuring the indoor CO2 concentration, we can obtain 

the supply air flow rate, Q. 

 

Then the energy used by the HVAC system, E, in the 

offices is 

                  ( )p supply roomE C Q T T�� �   (3) 

where pC  is the specific heat capacity of air, �  the air 

density,  supplyT the supply air temperature, and roomT  the 

room air temperature.  

2.3 Energy simulation in EnergyPlus 

2.3.1 Building geometry model and material 
properties 

This investigation used EnergyPlus (v8.80) to perform 

energy simulation for the HLAB building. We first 

constructed the building geometry model by SketchUp 

software as shown in Fig. 2. The HLAB building had three 

stories above the ground and a mechanical basement. On 

the first floor, the lab areas on the back and corner were 

not simulated. The third floor was simulated as a single 

space. As shown in Fig. 1, the HLAB building had offices, 

conference rooms, computer rooms, elevator rooms, stair 

rooms, mechanical control rooms, bathrooms, and 

corridors. Since this study focused on the energy use in 

the offices, other rooms were merged into one space for 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110409)
201

E3S 111

CLIMA 9

 4055 55

2



 

simplifying the simulations. The interior walls between 

offices were gypsum walls. The interior walls between 

offices and corridor were glass walls. The doors of the 

exterior offices and interior offices were wood and glass, 

respectively. As for the structure and material properties 

used for the simulations, the structure information was 

found in the HLAB building construction drawings and 

documents, while the material properties were from the 

ASHRAE Handbook – Fundamentals. 

 (a) (b) 

  
Fig. 2. (a) A photo of the HLAB building and (b) the geometry 

model of the HLAB building for EnergyPlus simulation 

2.3.2 Outdoor weather data 

To enable comparison of the simulated results with the 

measured data, our simulations used actual weather data 

collected at a weather station at the Purdue University 

Airport, which was 1.5 km away from the HLAB 

building. The data were collected hourly and included 

outdoor air temperature, dew point temperature, relative 

humidity, air pressure, wind speed, wind direction, etc. As 

for the solar radiation data, we used the data measured on 

the roof of the HLAB building from the BAS. The outdoor 

weather data were collected hourly and organized into the 

format which was used for EnergyPlus simulation. 

2.3.3 HVAC system settings 

Since each office had an independent thermostat that 

allowed occupants to adjust the set point temperature, our 

simulations defined each office as a thermal zone. Other 

indoor spaces on each floor were merged and simulated 

as one thermal zone. There were a total of 47 thermal 

zones in the simulation model. For all the offices in this 

study, we set the room temperature according to the actual 

thermostat set point from the BAS at each moment when 

validating the simulation program. Then we implemented 

the behavioral ANN model to adjust the thermostat set 

point for simulating the occupant behaviors. For other 

offices and the corridors, we set the temperature to be 

21.1℃ (70°F). This was based on the actual common 

setting in the HLAB building. There was also a thermostat 

in the basement controlling the air temperature to be 

22.8℃ (73°F). Similarly, the air temperature on the third 

floor was set to be 22.2℃ (72°F). The suspended ceiling 

spaces in each floor were unconditioned. 

2.3.4 Surface temperature and airflow model 

The wall surface temperature and airflow pattern in the 

offices impacted their energy use. The wall surface 

temperatures were close to the room air temperatures. 

However, the ceiling temperature was 2.7℃ (5℉) higher 

than the floor temperature in heating mode, while 1.1℃ 

(2℉) lower than the floor temperature in cooling mode, 

because the diffusers were on the ceiling level. Since the 

surface temperature distribution was not uniform, this 

temperature difference impacted the convection very 

much in the energy simulation. Hence, we used a surface 

mapping method in EnergyPlus to specify the difference 

between air temperature and surface temperature instead 

of a well-stirred mixing air model by default. 

 

2.3.5 Room occupancy, number of occupants, lights, 
and computers 

Room occupancy would affect the building energy use, 

such as HVAC system control, lightings, and internal 

equipment. We used the lighting status from BAS to 

determine the room occupancy in the single-occupant 

offices. For the multi-occupant offices, we used 

questionnaires to collect the arriving and leaving time of 

each occupant every day. The occupant load was assumed 

to be 100 W. There were four or eight lamps in single-

occupant exterior offices and multi-occupant interior 

offices, respectively and each lamp was 32W. We also 

assumed that each occupant used one computer (100W) 

when they worked in the offices. 

 

2.4 Implementation of the behavior ANN model 
into energy simulation 

For the building energy simulation, it is necessary to 

consider the occupant behaviors. When validating the 

simulation program, we used the actual thermostat set 

points, occupancy schedules and clothing level 

information. However, for most building performance 

simulation in the design phase before the building was 

built, the actual thermostat set points and occupancy 

schedule were unknown. This information was also hard 

to collect in many buildings without BAS. Therefore, we 

used a behavioral ANN model for building energy 

simulation to improve the energy simulation results. 

 

In our previous study [11], we built and trained an ANN 

model to predict the occupant behaviors. The behavioral 

ANN model could be expressed in the following form: 

 
1{1 exp[ ( )]}output hidden hidden outputBehaivor occurence b�� � � � � �w w X b      

          (4)       

 

where outputw  is the weight matrix in the output layer, 

hiddenw  is the weight matrix in the hidden layer, hiddenb  is a 

vector representing bias in the hidden layer, outputb  is a 

number representing the bias in the output layer,  

[ , , , ]T
airT RH Clo Met�X  is the normalized input parameter 

vector. There are four input parameters for the behavioral 

ANN model: air temperature, relative humidity, clothing 

insulation and metabolic rate.  
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This investigation implemented the behavioral ANN 

model into the energy simulation program. Fig. 3 shows 

the simulation process with the behavioral ANN model. 

When the simulation starts, the program first checks 

whether the office is occupied, since the behavior occurs 

only when there is an occupant inside the office. If so, the 

behavioral ANN model calculates the probability of 

behavior occurrence. With this probability, the program 

decides whether or not to adjust the thermostat set point. 

The differences between the single-occupant and multi-

occupant offices lie in two aspects. First, our previous 

study [11] demonstrated that behavior occurrence in 

response to a feeling of discomfort was different in multi-

occupant offices than in single-occupant offices. The 

reason for the difference was the compromise that took 

place among multiple occupants. Second, in single-

occupant offices, the occupants always adjusted the 

thermostat set point when they felt uncomfortable. While 

occupants could adjust the thermostat set point or their 

clothing level in multi-occupant offices, clothing 

adjustment would impact the thermal comfort of the 

occupants but not the building energy use. 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 
(b) 

 
 
Fig. 3. Simulation process with implementing the behavioral 

ANN model in energy simulation in (a) single-occupant offices 
and (b) multi-occupant offices. 
 

3 Results 
3.1 Validation of energy simulation program 
 

We first validated the energy simulation program with 

energy use data measured in the HLAB building for a one-

month period in three seasons in 2018. The simulation 

time for winter was from Feb 9th to Mar 9th, 2018, spring 

from March 12th to April 12th, 2018 and summer from 

June 9th to July 9th, 2018. Fig. 4 shows the outdoor 

temperature from January to July in 2018 in West 

Lafayette. The mean outdoor temperature was -0.5℃, 

5.2℃ and 23.4℃ in the three seasons, respectively.  

 

 
Fig. 4. Outdoor temperature from January to October in 2018 

 

Fig. 5 compares the simulated and measured energy use 

in all the offices in the three seasons. On March 7th the 

HVAC control system for all the offices failed so that the 

heating energy was very high and cooling energy use was 

zero. Except that day, Table 1 shows the maximum error 

was 14% among different seasons. The errors may have 

arisen from many factors such as door opening. In the 

simulations we assumed that the office door was closed, 

but this may not have been the case. If the door was 

opened, the measured energy use in the office would have 

increased because of infiltration. 

(a) 
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(b) 

 
(c) 

 

 

Fig. 5. Comparison between simulated and measured energy use 
in all the offices for one month in (a) winter, (b) spring, and (c) 

summer. 

 

Table 1. Comparison between simulated and measured energy 
use in all the offices for one month in different seasons. 

 
Winter Spring Summer 

Measured heating 

energy use (kWh) 

3396 2833 2102 

Simulated heating 

energy use (kWh) 

3177 2719 1945 

Error 6.40% 4% 7% 

Measured cooling 

energy use (kWh) 

857 2261 2726 

Simulated cooling 

energy use (kWh) 

736 2041 2565 

Error 14% 9.70% 6% 

 

3.2 Comparison of the simulated energy use between 
single- and multi-occupant offices 
 
After validating the EnergyPlus program, we ran the 

simulations with the behavioral ANN model and 

compared the simulated results with the measured energy 

use. Because of the randomness of the occupant behavior, 

every simulated result with the behavioral ANN model 

was different. If we had run only a few simulations, they 

may not have been representative and could not have 

covered all the possible ranges. Therefore, we ran the 

simulations with the behavioral ANN model for 200 

times. We used a box whisker chart to display the 

simulated results, since this type of chart can illustrate the 

mean and standard deviations (SD) for various 

simulations. Figs. 6 and 7 show the energy use of the 11 

offices in the interior zone and the nine offices in the 

exterior zone for two days in winter, respectively. The 

white lines represent the mean. The boxes represent the 

mean plus and minus standard deviation. The whiskers 

represent the upper and lower bounds. As the figures 

show, the simulated results with the behavioral ANN 

model match well the measured data. The simulated 

results with the behavioral ANN model also indicate the 

variation of energy use due to the behaviors. At every 

moment, the variation of energy use could be 1 kW and 

0.5 kW for heating and cooling in interior zone, 

respectively, and 0.5 kW and 0.2 kW in exterior zone, 

respectively. These variations accounted for more than 

25% and 15% of total energy consumption in the interior 

and exterior zone, respectively. The variation in the 

interior zone was larger than that in the exterior zone 

because the surrounding temperature of the interior 

offices was much higher (corridor temperature was 

around 21.1℃(70℉)) than the exterior offices (outdoor 

air temperature was less than 4.4℃(40℉) in winter). As a 

result, the relative change of adjusting thermostat set point 

for 0.56℃ (1℉) in the interior zone was much larger than 

in the exterior zone. Therefore, the impact of adjusting 

thermostat set point behavior on energy use in interior 

offices is larger than that in exterior offices. 

 
 

 

 

 

 

Fig. 6. Energy use of the 11 offices in interior zone for two days 

in winter 

 

 

 

 

 

Fig. 7. Energy use of the nine offices in interior zone for two 

days in winter 

 
 
 
3.3 Comparison of the simulated energy use with 
different behavior models 
 
Fig. 8 compared the simulations using the behavioral 

ANN model with those using only constant temperature 

set point, using the actual behavior and the measured case 
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for two days in winter and summer. The simulation case 

with constant thermostat set point used 22.8℃ (73℉). 

The results of the simulated case using actual behavior 

were closest to the measured one. The simulations used 

the behavioral ANN model, constant temperature set point, 

and actual behavior. The results that were simulated with 

the use of actual occupant behavior were closest to the 

measured data, which is completely understandable. The 

simulations with the behavioral ANN model also 

performed well. Most of the time, the measured energy 

fluctuated within the lower and upper bounds predicted by 

the behavioral ANN model. However, the simulation with 

constant thermostat set point exhibited a large 

discrepancy with the experimental data. The relative error 

was as large as 30%.  The reason was that some occupants 

set the thermostat set point much higher or lower than 22.8  

(73 ) in order to feel comfortable. They did not reset the 

thermostat when they left the office, and this behavior 

wasted considerable energy. That is why the measured 

energy use was higher than the predicted energy using 

constant thermostat set point, to some extent. 

(a) 

 

 
(b) 

 

 

 
Fig. 8. Comparison of energy use of all the offices for two days 

in (a) winter and (b) summer 
 

Fig. 9 summarizes the measured energy use simulated by 

using actual behavior and the behavioral ANN model for 

one month in the winter, spring, and summer, 

respectively. In the winter and spring, the heating energy 

was higher than cooling energy, but vice versa in the 

summer. Furthermore, in the winter and shoulder seasons 

the variation in energy use due to occupant behavior was 

greater for cooling than for heating. Meanwhile, the 

variation in energy use in the summer was smaller than in 

other seasons. This difference occurred because heating 

energy in the summer was mostly used when the interior 

offices were unoccupied and in the exterior offices at 

night. In these cases, occupant behavior seldom affected 

the energy use of the HVAC system. 

 

 
Fig. 9. Comparison between the measured and simulated total 

energy use in the 20 offices for one month in the winter, spring 

and summer. 

4 Discussion 
In this study, we used the behavioral ANN models to 

simulate the occupant behaviors and compared with 

actual energy use. We used questionnaires to record self-

reported behavior and clothing level. However, 

sometimes the occupants may have forgotten to record the 

data, which would have affected the behavioral modeling 

and simulated energy results. 

The actual heating energy use fluctuated a lot in summer 

as shown in Fig. 8. We checked the heat exchanger in the 

HLAB building to find out the reason. Although the water 

temperature set point was 54.4℃  (130℉), the supply 

water temperature could sometime be as high as 76.7℃ 

(170℉) and fluctuated. 

Due to the randomness of the occupant behaviors, every 

simulation result was different. Therefore, we had to run 

the simulation with the behavioral ANN model for 

multiple times. The simulated results of 200 times and 500 

times had very small difference. Therefore, 200 

simulations should be used with the behavioral ANN 

model. 

 

5 Conclusions 
In this study, we validated the energy simulation program 

and compared the simulated results with the behavioral 

ANN model with the HLAB building data. This 

investigation led to the following conclusions: 

(1) The energy simulation results were validated for the 

HLAB building for one month in winter, spring and 

summer in 2018, and the error was less than 14%. 
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(2) 2) The simulated energy consumption using the 

behavioral ANN model exhibited variation as a result of 

occupant behavior in the HLAB offices. The variation 

was 25% in interior offices and 15% in exterior offices. 

(3) The implementation of the behavior ANN model into 

energy simulation program could improve the simulation 

results. The simulation with the behavioral ANN model 

performed as well as using actual behavior, and better 

than the case using constant thermostat set point. 
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