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Abstract. Data from building automation systems is so far used for the operation of building systems and 

components only. The following work shows how this data can be used to enhance the building’s performance by 

strategically detecting potential sources for building optimization. With this method, faults and optimization 

potentials of the building operation can be detected; thus, the quality gap regarding efficiency and comfort aspects 

between design and operation can then be reduced. Furthermore, the intelligent use of data enables the realization 

of economic savings to support facility management with regards to increasingly complex HVAC systems. Effective 

quality management – rapid, transparent and cost effective – is carried out with the aid of digital methods, which 

are already state of the art in other industries.  

1 Introduction 

Systems within buildings are increasing in complexity 

which is causing performance gaps during all phases of 

the life span of a building from design to operation [1] [2]. 

Faulty control sequences, inverted sensors, undefined set-

points etc. are causing a lack of the overall quality of the 

performance of buildings which often remains 

undetected. Applying active functional specification is a 

robust approach supporting the design of functions 

controlled by building automation systems (BAS) and in 

addition making them testable during commissioning and 

operation of a building [3]. 

The above-mentioned concepts are realized within a 

transdisciplinary team of building engineers from SIZ 

energie+ of TU Braunschweig, TU Munich, and software 

engineers from RWTH Aachen University. Additional 

partners from industry, such as Wilo SE and synavision 

GmbH, collaborate in a national research project funded 

by the Federal Ministry for Economic Affairs and Energy 

in Germany. Big Data from BAS is preprocessed within 

the software platform “Digital Performance Test Bench” 

by synavision GmbH [4]. The software platform is 

additionally supported by component-based algorithmic 

modules for various tasks such as classification and 

semantic enrichment, but as well as automatic fault 

detection and pattern recognition using various data 

mining and artificial intelligence approaches. These 

modules form a foundation for flexible infrastructure to 

automatically analyze building performance. This 

contribution presents the first results of the project. 

The paper is organized in the following manner: 

Section 2 describes an overview of the algorithmic 

module toolkit and provides a basic understanding of the 

concept. Section 3 and its subsections describe different 

applications of the toolkit in more detail, Section 4 

concludes the paper and gives an outlook on shortcomings 

of and planned extensions to the concept. 

 

2 Algorithmic module toolkit 

The algorithmic module toolkit (AMT) presented in this 

paper consists of several components. An overview is 

depicted in 

Fig. 1. 

The data itself is stored in the Digital Performance 

Test Bench, which is shown on the upper left-hand side. 

It already has advanced capabilities to import and store 

various formats of data and can run several preprocessing 

steps such as interpolation and converting measurement 

data to fit equidistant time steps.  The algorithmic module 

toolkit itself consists of different stages that are shown as 
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columns of the table on the right-hand side. Each step 

serves a certain purpose, such as importing data into the 

toolkit, preprocessing the data, analyzing the data, 

calculating scores for the executed analysis algorithms, 

and finally presenting the results to the client (e.g. in the 

form of a PDF file or a webpage). The upper part of this 

figure represents the abstract infrastructure of modules 

that can be flexibly combined to complete workflows. The 

concrete instantiation of the toolkit modules is shown on 

the lower part of 

Fig. 1.  

In the example, concrete measured data in the form of 

comma separated values (CSV) is exported from the 

Performance Test Bench and then, in a first step, imported 

into the workflow of the AMT. Afterwards, the data goes 

through several preprocessing steps before different 

analyses are run. The final steps are the (semi-) automatic 

interpretation of the results and the reporting (here, in 

form of a PDF file).  

The AMT itself is actually implemented in the R 

programming language [5]. Each module consists of well-

defined input- and output interfaces so that they are freely 

combinable while serving a determined purpose. In the 

rest of this paper, concrete examples of module elements 

and application scenarios for them are described to 

illustrate the idea and possibilities of this approach. 

 

 

 

Fig. 1: Structure and workflow of the algorithmic module toolkit 

 
 

3 Results 

Within the developed structure, each module has self-

contained functions that solve different tasks which are 

combined into a complete process that solves a certain 

problem. The following sections describe such processes 

and example module elements that are part of the 

algorithmic module toolkit.  

3.1 Module Example 1: Data Type Detection 

When analyzing data, the first step is to generate 

knowledge of the characteristic of each data point. Hence, 

data must be classified into classes and subclasses to 

allow a further analysis. A classification in subcategories 

of approximately 150 different data-point types is 

necessary so that typical HVAC systems can be tested. 

The information about data-point classes can be detected 

by two different methods. One is  to filter each objects 

name given from the BAS. Here the difficulty lies in non-

standardized definitions or conventions. The second 

option is to use algorithms analyzing the trend of each 

time series to detect the above mentioned prior defined 

classes.  

The ability to automatically detect major classes was 

tested by using time series collected from many AHUs. 

The classes were defined according to physical quantities 

such as temperature, pressure, volume flow as well as set 

points (0%-100%). Also, a class “other” containing data-

points which cannot be categorized is defined. With data 

from several AHUs in one building and algorithms from 

machine learning disciplines, the data was separated into 

a training and testing phase. In Fig 2 the vote of each so 

far unclassified type of data-point is shown. The 

algorithms which are used compares the extracted 

features from the testing phase which are known since 

they are to every single unknown time series from the 

testing phase. Hence, a vote is not the direct result of the 

class being assigned to a data-point but the mean of all 

votes for all individual time series which have been tested.  
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Fig 2: Percentage of votes of the base-case in which evaluates 

the robustness of the detected classes.  

 

These votes then define which classes will be 

predicted and are compared to the prior defined real 

classes which have been trained by expert knowledge and 

are used as input by the algorithm. The results of this 

comparison are displayed in Table 1.  

 
Table 1 : Confusion matrix of real trained and tested predicted 

classes. 
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During another test-phase with AHU data from another 

building where the classes were known beforehand 

(expert knowledge), the votes from the applied algorithm 

were verified. These tests were conducted to explore the 

robustness of the algorithms. 

 

 
 
Fig 3: Percentage of votes of the test phase with data from 

“unknown” times series which evaluates the robustness of the 

detected classes. 

 

Even with lower votes, the classes can be predicted 

with a low error ratio since the algorithm acts in a 

democratic manner. Fehler! Verweisquelle konnte nicht 

gefunden werden. shows vote results in a confusion 

matrix of real and predicted classes with an error rate of 

0.5 for the set-point which is predicted to contain the class 

“other”. 

 
Table 2: Confusion matrix of real trained data from one 

building and tested with data from a different building to 

predict classes. 
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With the above shown method, prior trained classes can 

be classified according to their type, which is a 

prerequisite to further analyzing the data. Applying this 

approach in other instances, a detection of more detailed 

classes (e.g. differentiation between supply and exhaust 

temperatures, etc.) is possible.  

3.2 Module Example 2: Tag repository 

As the results of the data type detection need to be saved 

and made available in a proper manner, we developed a 

tag repository that is part of the infrastructure. It provides 

functionality in storing information about the data type 

that can then be used at a later point in the execution of 

the process. Here information such as site, discipline, 

system, component, position, sensor type, unit, etc. is 

attached.  There are several ways to save this information. 

One way is to use simple tags to indicate that a data point 

has a certain type (e.g. adding a tag like temperature : 

sensor is a sign that a sensor is measuring the 

temperature). Another form of tags would be simple key-

value-pairs, such as location : return_flow,  to save the 

fact that the sensor is measuring the return flow in a 

facility. Usually, tags are used in an additive manner, so 

that a data point is described by the sum of tags that are 

associated with it. In the given example, a temperature 

sensor that is installed in the return flow part of a system 

is described. One use for the saved information is 

described in Section 3.4 

3.3 Module Example 3: Outlier detection 

From literature and standard codes, research was 

conducted to investigate minimum and maximum values 

according to the data-point type. Out of the above 

(Section 3.1) mentioned 150 relevant data point types for 

performance tests, 44 can be associated with thresholds 

from literature. When connected to a module which is able 

to detect the data-point type (e.g. from Module 1 in 

Section 3.1), faults in sensor readings such as offsets, 

connection failures, conversions, and default values can 

be detected. This module is used to assess data quality and 

if successful, to further trigger deeper analysis methods. 
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3.4 Module combination as a process 

The algorithmic toolkit was established to be able to 

analyze various tasks. This approach has the benefit of 

using modules for different processes multiple times and 

configurations according to the requirements.  

One application scenario of the AMT is the so-called 

Data Quality Check. It helps clients to quickly get an 

overview of the data that they retrieve from building 

systems (e.g. a BAS). The workflow is split into 3 levels 

which are shown in Fig 4. 

 

 
Fig 4: Data Quality Check 

 

First the data is exported from the Performance Test 

Bench, loaded into the AMT and processed accordingly. 

After running several analyses and calculating a number 

of parameters, reports are created as shown in the figure. 

This displayed information is split into two different parts. 

Some parameters can be calculated for any time series, 

regardless of the type of data point under inspection. 

Others need information about the type of a certain data 

point, which is where the tag repository is used to store all 

necessary information. This is used to compare the 

measured data under inspection with certain typical, 

average characteristics of data same types. For example, 

the maximum and minimum values or the distribution of 

values are compared to those of comparable data sets so 

that significant discrepancies can be highlighted.  

The Data Quality Check itself is split into three 

different levels. The top level (Level 0) provides a very 

aggregated management overview of the data and reports 

in a traffic-light style about the quality of the data 

regarding different criteria. Furthermore, rankings of the 

data points are provided regarding various parameters 

(e.g. number of missing or invalid values in the data set) 

and linked to the more detailed views in the subsequent 

levels. Those (Level 1 and 2) show more information 

about each data point. This involves more and more 

detailed (statistical) factors as well as detailed figures that 

display the data itself and compare similar data points.  

4 Conclusions and Outlook 

With the AMT we established a robust infrastructure for 

the analysis of operational data from BAS. With its 

modules, complex problems are broken down to smaller 

components that can be (re-)used to compose processes 

which are able to automatically support performance 

testing within technical monitoring. With that approach 

the AMT supports the quality management of 

commissioning processes and supports the increase of the 

performance of buildings. The design approach of the 

toolkit is to ensure modules with a high reusability and the 

AMT being expandable to solve various tasks composed 

of different algorithms. 

Besides the above described infrastructure of the 

AMT, several modules have already been implemented.  

The module data point classification (Secti  on 3.1) 

defines the characteristics of each data point. With a 

training set of data from systems in one building, 

unknown classes can be detected automatically in another 

set. Knowledge about data point classes is essential for 

further investigations about the performance of buildings. 

With this gained semantics about data point types e.g.a 

time series being a supply air temperature further 

performance tests such as a suitable supply air 

characteristics depending on the outdoor air temperature 

can be derived. 

Further developments in data point detection are foreseen 

so that many data points can be grouped or the detection 

of finer granularities of more detailed classes (e.g. 

differentiation between supply and exhaust temperatures 

etc.) is possible.  

All gathered information is stored in the module tag-

repository to make use of semantics (Section 3.2). The tag 

repository has the ability to store key-value information. 

This tag repository is then being used for handling 

information and as an interconnection of many modules 

as a process. The interconnectivity for example is shown 

in Section 3.4.  

After the set-up of this robust infrastructure further 

modules will be deployed. These modules will support 

processes, among others, a detection of system states, an 

automated detection of faults within various HVAC 

systems and statistics of data point.  
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