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Abstract. Data-driven automatic fault detection and diagnostics (AFDD) have gained a lot of research 

attention in recent years. Many existing solutions need to learn from the fault operation data to be able to 

diagnose the faults. However, these data are usually not available in buildings. In this study we present a data-

driven AFDD solution for Air Handling Units (AHUs). The solution consists of three levels of fault detection 

that require different levels of data availability: the first level is daily energy benchmarking; the second level 

is control performance evaluation; and the third level is data-driven modelling of mechanical systems. The 

method is applied to two case studies: experimental data from ASHRAE project 1312-RP, and real-life 

operation data of an office building in France. These tests show that the solution is able to isolate control 

faults and mechanical faults of individual components, by learning from normal operation data only. 

1 Introduction 

Heating, ventilation, and air-conditioning (HVAC) 

equipment faults and operational errors result in comfort 

issues and waste of energy in buildings. Thanks to the 

rapid development of information technologies, sensors, 

and direct digital controllers, massive amounts of 

operation data are collected in buildings. However, these 

data are often not fully exploited to reveal the faults. 

Efficient data-driven automatic fault detection and 

diagnostic (AFDD) solutions are of great need in the 

industry.  

In recent years, a number of studies utilized statistical 

methods, supervised machine learning, and unsupervised 

machine learning for AFDD in buildings.  

Statistical methods analyse the correlation between 

data and detect the change of correlation when faults 

occur. For example, Xiao et al [1] applied principle 

component analysis (PCA) on AHUs to detect faults. 

Supervised machine learning methods include 

regression and classification. Regression methods use 

normal operation data to train the model, and then 

compare the prediction with real measurements to detect 

faults. Wang and Chen [2] applied the auto-regressive 

exogenous (ARX) model to VAV system. Ajib et al [3] 

employed a piecewise ARX model to simulate building 

thermal dynamics. Classification methods use normal 

operation and abnormal operation data to train the model, 

and to recognize patterns of different faults. Li et al [4] 

developed a tree-structured Fault Dependence Kernel 

(TFDK) method for AHU. Du et al [5] used artificial 

neural networks (ANNs) to train regression models of 

AHU, and used the latter to classify detected faults. 

Unsupervised machine learning methods are used 

when no labelled training data are available. Li and Wen 

[6] developed an AHU fault detection strategy based on 

pattern matching. Miller, Nagy, and Schlueter [7] 

developed a day-typing process that uses symbolic 

aggregate approximation (SAX), motif and discord 

extraction, and clustering to detect the underlying 

structure of building performance data. 

Although a lot of data-driven AFDD solutions have 

been developed, most of them have limited capability in 

diagnostics, unless utilizing fault operation data which are 

usually not available in buildings.  

In this study we present a data-driven AFDD solution 

consisting of three levels of fault detections. The first and 

second levels use statistical methods to identify overall 

abnormal behaviour and control faults, respectively. The 

third level uses supervised machine learning regression 

based on normal data to diagnose mechanical faults.  

2 Three-level fault detection 

An HVAC equipment is usually composed of a) the 

mechanical system, including heating, cooling and 

ventilation components, actuators, and sensors; b) the 

controllers; and c) the human-machine interface (HMI). 

Components and related faults in an AHU are listed in 

Table 1 [8]. 

In practice it is essential to address the faulty 

component, so that building operators are able to take 

timely maintenance actions. At the same time, to 

implement a fault detection solution, the building 

operators would like to know which data they have to 

collect, and what results they can expect with these data. 
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Table 1. AHU components and related faults. 

Components Faults 

M
ec
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Cooling and heating coil Fouling, reduced capacity 

Valves and dampers Stuck, leakage 

Supply and return fan Reduced capacity 

Variable speed drive Not reacting 

Sensors Drift, offset, stale 

Controller 
Disabled, overridden, 

oscillation 

HMI 
Wrong set-point and 

wrong schedule 

Our three-level AFDD solution is illustrated in Fig 1. 

The idea of level 1 is to use minimum amount of data to 

detect abnormal behaviour of the overall system. Then we 

further provide level-2 and level-3 fault detections, which 

require more detailed data, to diagnose faults of the 

controller and the mechanical system, respectively.  

 

 

Fig. 1. Concept illustration of the three-level AFDD solution. 

2.1. Level 1: daily energy benchmarking 

Our level-1 AFDD requires the following data: 

a. Daily energy consumption from sub-meters: 

cooling coil, heating coil, and fan energy. 

b. Daily average outside temperature. 

c. Daily average of controlled variables: supply air 

temperature and pressure (optional). 

In normal operation, the daily energy consumption is 

correlated with the outdoor air temperature. When the 

data fall out of the normal pattern, that indicates the 

occurrence of faults. The ASHRAE guideline 14 [9, 

Appendix D] describes various linear regression models 

for building energy consumption.  Similar methods are 

applicable to AHU energy use as well. 

Sometimes reduced energy use is caused by reduced 

comfort in the building. In such cases, the controlled 

variables, which indicate the comfort achieved by the 

HVAC equipment, are helpful in diagnosing the abnormal 

behaviour.  

2.2 Level 2: control performance evaluation  

Our level-2 AFDD requires the following historical data 

with system-appropriate sampling time: 

a. Controlled variables: supply air temperature and 

pressure. 

b. Control set points: supply air temperature and 

pressure set points. 

c. Control commands: heating and cooling valve 

commands, supply and return fan commands. 

This level uses statistical methods to evaluate control 

precision and stability. 

2.2.1 Precision 

Controller minimizes the control error (difference 

between controlled variable and control set-point) by 

changing the control command to regulate the mechanical 

system. A high control error should only occur when the 

controller is saturated at 0% or 100%. Any other cases 

indicate overridden, wrong control logic, or slow reaction. 

2.2.2 Stability 

Without losing precision, overshooting and oscillation of 

the controlled variable should be minimized. Stability is 

measured by the cumulated absolute change of the 

controlled variable.  

2.3 Level 3: data-driven modelling of the 
mechanical system 

Our level-3 AFDD requires the following historical data 

with system-appropriate sampling time: 

Heating and cooling coil: 

a. Outputs: heating/cooling power. 

b. Inputs: valve command. 

c. Optional inputs: air entering temperature, air 

flow rate, and water entering temperature. 

Supply and return air fan: 

a. Outputs: air flow rate. 

b. Inputs: fan speed command 

c. Optional inputs: differential pressure over the 

fan, supply or return air pressure, and fan power. 

This level of fault detection trains regression models 

of the mechanical system with normal operation data to 

predict the normal output with given inputs. We build four 

models for heating coil, cooling coil, supply fan, and 

return fan, and use them to detect faults associated with 

each component by comparing the measured output with 

the predicted normal output.  

The inputs of the models are selected based on 

physical knowledge. Such a choice gives better results 

than using all available measurement or forward-selected 

variables; see Section 3.2.3 for more details. 

The rest of this section will introduce the algorithms 

for model fitting, cross validation, feature selection, and 

fault detection. 

2.3.1 Regression model 

In this study, we use the random forest regression model 

to make predictions. Random forest [10] is based on 

decision tree algorithm. CART is a widely used decision 

tree algorithm for both classification and regression. The 

algorithm splits the feature space recursively into a set of 

subspaces, and then fits a simple regression model in each 

subspace. The splitting stops when no significant gain of 

regression precision can be obtained. 

Random forest is an ensemble algorithm that fits a 

number of decision trees on randomly selected features 

and sub-samples of the dataset, and takes the average over 

these trees for better predictive accuracy and to control 

over-fitting. A typical number of trees is 100.  
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2.3.2 Cross validation 

Root mean square error (RMSE) is a commonly used 

metric representing the error of data fitting. Typically, 

regression algorithms fit the training dataset to minimize 

RMSE. To avoid overfitting, it is necessary to cross-

validate the performance of the model. 

We use 5-fold cross validation in this study. The 

procedure is repeated 5 times, taking different sections as 

test data. The final RMSE is calculated as the average 

RMSE of all the folds. The result gives the precision of 

the regression model. It is also used to set thresholds for 

fault detection later; see Section 2.3.4. 

2.3.3 Feature selection 

In the machine learning literature, the predicted variable 

of the model is called target, and the inputs of the model 

are called features. In fitting a regression model, 

irrelevant features not only increase the computational 

load, but also make it harder for the algorithm to reveal 

true correlations between variables. Forward feature 

selection [11] starts by fitting the model with the single 

feature that gives the best RMSE, and then iteratively 

adding features by selecting the best, each time according 

to RMSE. It stops adding features when no significant 

improvement of RMSE can be obtained. 

This method is purely data-driven. It can improve 

model prediction performance, but when selected features 

change, the modelled system boundary changes as well. If 

the fault to be detected falls out of the system boundary, 

it will not be detected anymore. Therefore, for the purpose 

of fault detection, it is suggested to select features mainly 

based on physical knowledge of the system, and cross-

check with data-driven results. More details will be 

discussed in the case study in Section 3.2.3. 

2.3.4 Fault detection 

Faults that occur on a specific component cause a major 

discrepancy between measured and predicted values of 

that component. The prediction residual is compared to a 

threshold, which is three times the RMSE obtained from 

cross validation of the regression model (see Section 

2.3.2). When the residual of a specific component exceeds 

the threshold, it is regarded as a fault. 

A fault of some component may cause minor 

discrepancy on other components, and cause fault alarms 

on both components. In this case, the component with the 

larger normalized residual is identified as the real faulty 

component. Here, “normalized residual” means the 

residual divided by the fault detection threshold. 

3 Case study 1: lab measurement data 

3.1. System description 

Our first case study used data of the ASHRAE project 

1312-RP. Two AHUs were running in parallel in the 

laboratory: one in normal operation, and one in abnormal 

operation with different faults in summer, winter, and 

spring. Every fault case was run for one day from 6 to 18 

o’clock. The AHU was composed of heating coil, cooling 

coil, supply fan, return fan, and mixing dampers, as shown 

in Fig 2. The heating and cooling valves were regulated to 

maintain supply air temperature. The supply fan speed 

was regulated to maintain supply air pressure. The return 

fan speed was 80% of the supply fan speed. The 

economizer switched between full outside-air mode (free 

cooling) and mixing-air mode (heat recovery) based on 

the outdoor air temperature. The AHU was serving 12 

rooms equipped with Variable Air Volume (VAV) boxes, 

which regulated the damper individually in each room to 

maintain room temperature. The collected measurement 

data are listed in Table 2.  

 

Fig. 2. ASHRAE project 1312-RP, AHU composition. 

Table 2. ASHRAE project 1312-RP, description of data. 

Short name Description 

Toa Outdoor air temperature 

Tma Mixed air temperature 

Thcda Heating coil depart air temperature 

Thcew Heating coil enter water temperature 

Tccda Cooling coil depart air temperature 

Tccew Cooling coil enter water temperature 

Tsa Supply air temperature 

Tra Return air temperature 

Psa Supply air pressure 

dPsf Supply fan pressure difference 

dPrf Return fan pressure difference 

ϕsa Supply air humidity 

ϕra Return air humidity 

Qoa Outside air flow rate 

Qra Return air flow rate 

Qsa Supply air flow rate 

Qhw Heating coil water flow rate 

Qcw Cooling coil water flow rate 

Coadp Outside air damper command 

Cradp Return air damper command 

Ceadp Exhaust air damper command 

Chcv Heating coil valve command 

Cccv Cooling coil valve command 

Csf Supply fan command 

Crf Return fan command 

Ehc Heating coil heating power 

Ecc Cooling coil cooling power 

Wsf Supply fan electric power 

Wrf Return fan electric power 
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Fig. 3. Case study 1. ASHRAE project 1312-RP, level 1 fault detection, daily energy consumption 

 

Fig. 4. Case study 1. ASHRAE project 1312-RP, level 2 fault detection, precision analysis 

 

Fig. 5. Case study 1. ASHRAE project 1312-RP, level 2 fault detection, stability analysis 

 

Fig. 6. The impact of AHU mechanical faults on system components 

3.2. Results 

3.2.1. Level 1: daily energy benchmarking 

Daily energy consumption and average supply air 

temperature and pressure for all normal and abnormal 

operation cases are plotted in Fig 3. One can see that 

results of some fault cases significantly drift away from 

the normal linear pattern. Below is a summary of 

possible faults. 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

500 099 

4

mailto:tianyun.gao@cstb.


 

a. Increased heating and cooling energy at the same 

time. This may indicate heating or cooling valve 

reversed, stuck open, or having leakage.  

b. Reduced cooling energy, increased supply and 

return fan energy. This may indicate that the cooling 

valve is stuck closed in cooling seasons. As a result, 

supply air temperature cannot be maintained at the set-

point. All VAV boxes in the rooms require more air for 

cooling, causing increased fan energy. The supply air 

pressure may be lower than normal if the supply fan has 

reached the maximum speed. 

c. Increased cooling energy. This may indicate an 

outside air temperature sensor bias, causing free cooling 

mode not to be enabled on time. 

d. Increased supply and return fan energy. This may 

indicate coil fouling, dirty filters, stuck-closed air 

dampers, or other faults which increase the AHU 

ventilation resistance. 

e. Reduced return fan energy. This may indicate 

stuck closed exhaust damper, return fan failure, or return 

fan variable speed drive being frozen at low speed.  

f. Increased return fan energy. This may indicate 

return fan variable-speed drive being frozen at high 

speed. 

g. Heating or cooling energy around zero, with no 

significant increase of supply fan energy. This may 

indicate stuck closed outside air damper. In this case, if 

the supply temperature and pressure data are available, 

they should show that supply temperature is maintained 

at the set-point, while supply pressure is around zero. 

The supply fan is running with almost no air flow. It is 

a critical situation which could damage the fan motor 

and blow up the duct. 

Reduced heating or cooling capacity caused by 

reduced supply water flow from the pump or pipe 

leakage does not have influence on daily energy 

consumption, as long as the maximum capacity is not 

reached, because it is compensated for by the control. 

This fault can be detected in our level-3 fault detection. 

Unstable control does not have influence on daily 

energy consumption, either. This fault can however be 

detected in our level-2 fault detection, as we see below. 

3.2.2. Level 2: control performance evaluation 

Fig 4 shows daily average control errors versus control 

commands. The green area indicates normal operation. 

The control errors are close to zero unless the controller 

is saturated. On this plot we can discover that the 

“cooling valve stuck” test cases were actually 

implemented by overriding the cooling command, and 

not by blocking the valve. Therefore, the dataset is not 

representative of actual faults. For this reason, before 

applying the next level of fault detection (level 3), we 

replace the overridden cooling commands with a 

‘normal’ control output based on the real control error. 

The daily cumulated absolute change of control error 

can be used to monitor control stability. As shown in Fig 

5, the test case ‘unstable cooling control’ has 

significantly larger values than the other cases. We 

hence conclude that there is a stability fault. The test 

case ‘unstable fan control’ does not have significant 

impact, as stated in ASHRAE 1312-RP final report [12]. 

Test cases are described in table 3. 

3.2.3. Level 3: data-driven modelling equipment  

Table 3. ASHRAE project 1312-RP, faults associated to 

each component. ‘*’ indicate not discoverable faults. 

Com-

ponent 

Associated faults Test 

cases 

Heating 

coil  

model 

Heating capacity reduced 20,21,22 

Heating coil fouling 18,19 

Heating coil leakage 5,6,7 

Cooling 

coil 

model 

Cooling coil valve stuck 

closed 

4,9,24, 

28 

Cooling coil valve stuck open 

or has leakage 

8,10, 

23,35,36 

Cooling coil valve reversed 11 

Supply 

fan 

model 

Outside air damper stuck 

closed 

3,25, 

29,30 

*Outside air damper stuck 

midway in mixing air mode 

12,13, 

26,27 

Heating coil fouling 18,19 

Air duct leak before supply 

fan 

15 

Air duct leak after supply fan 14 

Return 

fan 

model 

Return fan failure 2,33 

Return fan speed frozen 1,37,38 

Exhaust damper stuck closed 17,31,32 

*Exhaust damper stuck open 16,39 

 

Fig 6 illustrates how AHU faults relate to each other and 

to global system behaviour. For each mechanical 

component, the correlation between the inputs and the 

output is dependent on the characteristics of the system. 

Occurrence of a fault changes the characteristics. As a 

result, the real output deviates from the prediction.  

Based on Fig 6, each fault is associated with one 

AHU component, as shown in Table 3. The impact of 

some faults is insignificant [12]. These test cases are 

marked with ‘*’ in the table. Control faults (test case 14 

‘Cooling coil control unstable’ and test case 42 ‘Fan 

control unstable’) are to be detected in level-2 fault 

detection. Outdoor air temperature sensor bias (test 

cases 40,41) are to be detected in level-1 fault detection. 

Fault detection accuracy is calculated based on the 

confusion matrix, which is shown in Table 4. The 

accuracy is computed as the sum of true positive and true 

negative cases divided by the total number of test cases. 

Comparison of regression model precision and fault 

detection accuracy with different feature selections is 

shown in Fig 7. The method of forward feature selection 

is described in Section 2.3.3. As can be seen, using all 

features results in low prediction errors. Forward 

selection from all features attains even lower prediction 

errors, because the amount of training data is limited. 

Using physical knowledge or control commands has 

higher prediction errors, but attains better overall fault 

detection accuracy, since there are fewer false negative 

cases (missed faults). 
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Fig. 8. ASHRAE project 1312-RP, level 3 fault detection, prediction results of 42 test cases 

 

Fig. 9. ASHRAE project 1312-RP, level 3 fault detection, identify faulty component based on comparison of model residuals. 

 
Table 4. Confusion matrix 

 Fault No fault 

Fault detected True positive False positive 

No fault detected False negative True negative 

 

 

Fig. 7. Case study 1, ASHRAE project 1312-RP, comparison 

of feature selections for prediction in level 3 fault detection 

 

Detailed prediction results are shown in Fig 8. 

Heating coil and cooling coil models use only the 

control command as input. Supply and return fan models 

use inputs based on physical knowledge as listed in 

Section 2.3. 

In Fig 8, there is only one false negative case, 

‘cooling coil stuck at 20%’. The reason is the impact of 

this fault is too small to be detected. There are several 

false positive cases. The reasons for the false positive 

cases are the following: 

a. The heating coil model produces false positive 

when cooling valve is stuck open or has leakage. The 

reason for this error is that the heating valve opening up 

to 80% (caused by cooling valve leakage) is not covered 

in the training data, where heating valve is opened up to 

at most 35%. The same reason causes cooling coil false 

positive when heating coil has leakage. 

b. When outdoor air damper is stuck closed, the air 

flow entering the heating and cooling coil is extremely 

low. This situation is also not covered in the training 

data. Therefore, the cooling coil model declares false 

positive in this situation. 

c. The return fan model declares several false 

positives. From Fig 6 we know that the faults of other 

components have side effects on the return fan.  

When more than one component model detects 

faults, the contributions of each residual were compared, 

and the component with the largest residual was 

identified as the faulty component, as shown in Fig 9. 

As we can see, most test cases are correctly diagnosed; 
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the incorrect ones are cases 3, 19, and 23. The overall 

fault diagnostics accuracy is 92.8%. 

 

Fig. 10. Case study 2, office building operation data, level 1 fault detection, daily energy consumption. 

 

Fig. 11. Case study 2, office building operation data, level 2 fault detection, precision analysis. 

 

 

Fig. 12. Case study 2, office building operation data, level 2 fault detection, stability analysis. 

 

4 Case study 2: office building data 

4.1. System description 

The second case study used real-life operation data of an 

office building from March to October 2016. Different 

from the system in the first case study, this building was 

equipped with a two-pipe system. Depending on the 

season, the heat pump produced either chilled water or 

hot water. There was one coil in the AHU for heating 

and cooling. The unit had an energy recovery unit with 

an outside air bypass damper. The air system was 

running in constant flow. 

Due to space limitations, only level-1 and level-2 

fault detection results are presented in this paper. 

4.2. Results 

4.2.1 Level 1: daily energy benchmarking 

Daily heating, cooling, and fan energy consumptions are 

shown in Fig. 10. They show similar patterns as in case 

study 1: The heating and cooling energy is linearly 

correlated to outdoor air temperature; the fan energy 

does not change much with outdoor air temperature. The 

data do not include very low temperature seasons from 

November to February. Below are our findings: 

a. A few cooling energy and fan energy (marked in 

red circle) values were extremely low. By checking the 

detailed operation data, we found out that it was caused 

by missing meter data or early shut down of the AHU. 

b. In transition seasons (when outdoor air 

temperature was between 10 and 20°C), heating energy 

showed two very different patterns, as marked in green 

circles. By checking the detailed operation data, we 

found out that the pump control was changed in June 

from running continuously to demand control based on 

valve position. This measure not only saved pump 

energy, but also reduced heating energy every time the 

valve was closed. This observation may indicate a small 

heating valve leakage. 

c. The fan energy showed two patterns as marked in 

green circles: higher in warm seasons, and lower in cold 
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seasons. It was caused by different pressure set-points, 

manually changed by the building operator. 

4.2.2 Level 2: control performance evaluation 

Fig. 11 depicts precision analysis. The green area 

indicates normal operation. By investigating the points 

falling out of the green area, we identified some control 

faults: 

a. Sometimes the cooling command was not reacting 

to temperature control errors. We found out that it only 

happened when the outside air bypass damper inside the 

heat recovery unit was controlling supply air 

temperature at a higher set-point. The aim of the high 

set-point was to realize a sequence control between free 

cooling and mechanical cooling. However, it caused the 

problem that free cooling was disabled when mechanical 

cooling started to take control of the supply air 

temperature. A correct solution is to set the free cooling 

set-point below that of mechanical cooling. 

b. Sometimes the fan control precision fell out of the 

normal pattern because the AHU was manually shut 

down, or the fan was overridden for a short period of 

time. 

Stability analysis is given in Fig.12. Stability of fan 

pressure control was good and consistent on most days. 

The days with bad stability (higher cumulated absolute 

change) were those when the fan was switched on and 

off manually. Temperature control stability was 

significantly worse in cooling seasons than in heating 

seasons. By checking the detailed operation data, we 

found out that bad stability always happened in free 

cooling mode. It turned out that the control of outside air 

bypass damper in the heat recovery was very unstable. 

4.3. Maintenance suggestions  

Some of the findings, such as set-point change, control 

command override, and meter missing data, explain the 

data patterns we observed. Some other findings require 

maintenance of the system. We suggest the following 

actions: a. Test whether or not the heating/cooling valve 

has leakage. b. Change the control logic of supply air 

temperature to sequence control between free cooling 

and mechanical cooling. This can be realized by giving 

free cooling a lower set-point. c. Change the control 

parameter of outside air bypass damper to avoid 

oscillation. 

5 Conclusion 

In this paper we have presented a three-level AHU 

AFDD solution. Required data are listed for each fault 

detection level. The new solution helps the building 

operator to set up the data collection plan depending on 

the fault detection focus. 

The method was applied to two case studies. The 

first case study was a laboratory test including normal 

operation and manually created abnormal operation with 

many common faults in AHU. For training the models, 

only normal operation data were used. Abnormal 

operation data were used to test the performance of our 

solution. We have shown that the solution was able to 

differentiate between control faults and mechanical 

faults. Mechanical faults of different components were 

isolated by the level-3 fault detection with an accuracy 

of 92.8%. 

To test the practical usability of the solution, the 

second case study used real operation data of an office 

building. We showed that the level-1 and level-2 fault 

detections can identify some abnormal operations of the 

system. The level-3 fault detection, which gives more 

insight on mechanical equipment, is left as future work. 
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