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Abstract. Detecting and diagnosing faults that degrade the performance of heating, ventilation, and air 
conditioning (HVAC) systems is very important for maintaining high energy efficiency. The performance of 
HVAC systems can be evaluated by analyzing monitored data. However, data from a HVAC system generally 
includes uncertainties, which renders monitored data less reliable. Then, we focused on uncertainties and a 
calculated performance distribution. The uncertainties from sensors, actuators, and communications were 
modelled stochastically and were incorporated into a detailed simulation. The system coefficient of 
performance (SCOP) was used as a performance indicator, which is defined as the ratio of suppled heat to 
total power consumption. The SCOP distributions over the course of representative weeks in 2007 and 2015 
were calculated by repeating the simulation 2,000 times with different uncertainties. Regarding the results for 
2015, the 90% confidence interval of the distribution was -4.9% to 5.8% from the SCOP value without 
uncertainties. The SCOP value determined from the monitored data in 2015 was outside of the low end of the 
distribution though that in 2007 was inside of the interval. Through an analysis of the monitored data, it was 
found that fault detection is possible by comparing the monitored data with the distribution. 

1 Introduction  
Since heating, ventilation and air conditioning 

(HVAC) systems account for a large proportion of the 
total energy consumed in buildings, they must maintain 
high efficiency. However, it is difficult to avoid faults that 
deteriorate performance. Faults in commercial buildings 
are assumed to cause efficiency reductions ranging from 
5% to 30% [1-3]. Therefore, the use of Fault Detection 
and Diagnosis (FDD) is very important [4]. 

FDD methods are primarily classified into three types: 
abnormal detection from historical data, rule-based 
methods using expert knowledge, and model-based 
methods [1]. Although these methods have different 
features, they all utilize monitored data as input values. 
The monitored data is regarded as a set of reliable values 
from which the true status of the system can be 
determined. 

However, HVAC systems generally have 
uncertainties, which reduces the reliability of the 
monitored data [5]. A strategy for detecting sensor errors 
before applying FDD methods has been investigated. 
However, the uncertainties targeted in this research are 
inevitable due to limited equipment accuracy, and these 
uncertainties are different from the errors targeted in prior 
research [6]. 

From this analysis, system performance considering 
the uncertainties was calculated using a detailed 
simulation, and a fault detection method using the 
performance is proposed in this paper. We focused on not 
FDD but fault detection because it is necessary to detect 
the presence of faults before applying FDD which locates 
faults. The target system was the water side of an HVAC 
system in a large office building, called a heat source 
system. A simulation of the target system was constructed 
to calculate performance fluctuation due to uncertainties. 
Furthermore, the uncertainties in the system were 
modelled and were incorporated into the simulation. 
Subsequently, the performance distributions of the system 
were calculated from Monte Carlo simulations with 
different uncertainties. 

2 System description  

2.1 Target building and system 

This research was conducted on a real system in a real 
building. The target building is located in Tokyo, Japan, 
which was completed in the autumn of 2006. The building 
houses offices and its total floor area is approximately 
162,000 m2. 
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The target system is the water side of an HVAC 
system in the building, which is called a heat source 
system (Fig. 1). It has 4 chillers with approximately 12 
MW total capacity, 20 pumps, heat exchangers, and water 
thermal storage tanks with approximately 6,500 m3

capacity. In addition, it uses sewage heat instead of 
cooling towers.

2.2 Control system

The heat source system has water thermal storage 
tanks, thus the control logic is complex. At a fundamental 
level, it stores heat at night, and discharges heat during the 
day. The depth of the tanks is 6 m, and the temperature in 
the tanks was measured at 12 points along the vertical 
direction. The residual heat charge amount was calculated 
from the amount of water in the tanks, the temperature in 
the tanks, and the reference temperature. Based on the 
residual heat charge at 22:00 and the sewage temperature, 
the operating loads of the chillers for heat storage were
determined in the integrated controller in order to ensure
efficient operation.

In addition to the storage and dissipation, the system 
has small control loops that use proportional-integral (PI) 
control (1), which is commonly used for feedback control 
in building services as follows:

�(�) = �� ��(�) + �
	


∫ �(�)
� ��� (1)

where � is time, �(�) is the indicated value, �(�) is the 
control deviation, and �� and �� are the coefficients for 
proportional and integral terms, respectively.

As an example, inverter frequency of a chiller chilled 
water pump is controlled with the PI, thus ensuring the 
measured value of the flow rate remains at a set value.
Further, the heat exchanger pump is also controlled with 
the PI, ensuring the measured the temperature reaches a
set value. These PI controls are operated using direct 
digital controllers (DDC).

2.2 System performance

The system coefficient of performance (SCOP) is the 
ratio of heat supplied to the building to the total power
consumed by chillers and pumps. The SCOP for the 
system was used as performance indicator in this study.
Fig. 2 shows weekly SCOP values from May to 
September in 2007, which is the first summer in which the 
system was in operation. This data was gathered from the 
monitored data in the building energy management 
system (BEMS). The SCOP was different each week,
because system performance changes with boundary 
conditions such as heat load and sewage temperature. This 
makes fault detection difficult, because there are no 
methods for judging what level of performance is 
appropriate against the boundary condition.

3 Model description

3.1 Heat source system simulation

The heat source system simulation used in this 
research was coded in MATLAB based on the equipment 
and design specifications of the target system. The 
calculation time step was set to 1 min, and the input items 
were the actual load, sewage temperature, chiller 
operation order, and some set values. 

Flow rate was calculated while considering pressure 
and flow balance in the pipe network. Moreover, the flow 
balance calculations were based on Kirchhoff’s low. The 
total pump head and flow rate were determined from the 
specification curve, which was reshaped based on an
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Fig. 2. Weekly SCOP determined from the monitored data.

Fig. 1. Studied system.
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inverter frequency (Fig. 3). The pressure loss in pipes was
calculated using the Darcy-Weisbach equation (2), and
the pressure loss at valves was calculated based on the 
opening degree and flow rate as an equal proportion as 
follows:

∆� = � �
�

�
� �� (2)

where ∆� is the pressure loss [Pa], � is a flow coefficient 
[-], � is the pipe length [m], � is the hydraulic diameter 
[m], � is the density of the fluid [kg/m3], and � is the flow 
velocity [m/s].

The temperature in the tanks and heat exchanger were
calculated theoretically, and the outlet temperature of the 
heat exchanger was calculated using equations (3)-(5) as
follows:

� = ��( !��) (3)

� = "#$#(�#,%& − �#,'*) (4)

� = "-$-(�-,'* − �-,%&) (5)

where  � is the exchanged heat [W], � is the heat transfer 
coefficient, � is the heat exchange area [m2],  !�� is the 
logarithmic mean temperature difference [°C], " is the 
flow [kg/s], and $ is the specific heat at constant pressure.
The subscripts ℎ and $ refer to the hotter and the colder 
side, respectively, and the subscripts 01 and 2�� refer to
the inlet and outlet, respectively.

The performance of the chillers was calculated using
the specification curve (Fig. 4). The control logic, such as 
heat charge and discharge, and PI controls were also 
incorporated in the original system. We incorporated the 
threshold and waiting time for controllers to change 
numbers of operating pumps. Finally, 102 items such as 
flow rate, temperature and power were output. The 
monitored data and simulation results of the chilled water 
temperature and flow rate over the course of a
representative week are compared in Fig. 5. It was
confirmed that the behaviours are similar, and the 
simulation results exhibit the same phenomenon as in the 
real system. Because both data correspond to 1 min
intervals, their values fluctuate sharply when the number 
of pumps control is performed.

3.2 Uncertainty modelling 

Uncertainties in the heat source system were 
categorized into three types (Fig. 6): uncertainties from
the sensors (Type1), from the DDC (Type 2), and from 
the actuators (Type 3). Actuators are control objects 
which includes valves and inverter frequency in the 
pumps. Data collected with the BEMS that was available 
for monitoring (monitored data) can be regarded as 
resulting from these types of uncertainties.

These uncertainties were assumed to be normally
distributed with average and variance conforming to the 
equipment accuracy. This is inevitable, despite the fact 
that the equipment does not have faults. Uncertainties in 
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Fig. 3. Pump pressure and efficiency against water flow.

Fig. 4. Refrigerator performance.

(a) The monitored data.

(b) Simulation result.
Fig. 5. Comparison between the monitored data and 
simulation results.

Fig. 6. Uncertainties in the system.
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the sensors are equivalent to random errors that occur
during measurement [5]. Therefore, the SCOP values
calculated from the simulation results in the presence of
uncertainties can be regarded as a value without faults 
because the uncertainties are not perceived as faults.

There are two kinds of uncertainties: full scale (FS) 
and reading (RD). FS is associated with the allowed 
ranges for various values, as defined in equation (6); RD 
is associated with the read value, as defined in equation
(7) as follows:

3� = 3� + 451� × 6 (6)

3� = 3� × (1 + 451� × 6) (7)

where 3� is the value with the uncertainty, 3� is the value 
without the uncertainty, 451� is a random number drawn
from a standard normal distribution, and 6 is the standard 
deviation of the uncertainty.

To model uncertainties, the standard deviation σ was
set to half the equipment accuracy given in Table 1. These 
parameters and uncertainties were taken from the 
Japanese Industrial Standards and similar sources [6]-[10].
Approximately 250 uncertainties were incorporated into 
the simulation. Values with uncertainties (measured 
values) and values without uncertainties (true values) are 
calculated in the simulation (Fig. 7). Conventional 
simulations that do not consider uncertainties only 
calculate true values because they do not distinguish true 
values and values with uncertainties. In the real systems, 
because the state can be grasped only by monitoring, true 
values can never be obtained. This simulation model can 
calculate the control state that results from the interaction 
between various uncertainties.

3.3 Monte Carlo simulation 

Monte Carlo method was performed to calculate 
SCOP by combination of various uncertainties and to 
obtain the distribution. Monte Carlo method is a 
computational algorithm based on repeated random 
samplings. In this research, the simulation was repeated 
2,000 times with different uncertainties. It should be noted 
that values of uncertainties were not changed at every 
calculation step but were changed at every 2,000 
simulations. This is based on an assumption that values of 
uncertainties do not change in short period.

4 Results and Discussions 

4.1 Distribution of weekly SCOP in 2007

Fig. 8 shows the distribution of SCOP calculated from
the Monte Carlo simulation results. Its 90% confidence 
interval and SCOP were determined from the monitored 
data. The simulation period was set to a summer 
representative week (from 22:00 on July 28 to 21:59 on 
August 4, 2007). The 90% confidence interval was 4.69
to 5.20 even though SCOP value determined from the
monitored data was 5.05. As a reference, the SCOP value 
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Type Target* unit FS/RD** Range Accuracy σ
1 Temp. °C FS 0~100 ±0.35 0.175

Flow m3/min RD - ±2% 0.01
Power kW RD - ±1% 0.005

Pressure kPa FS 0~500 ±1% 2.5
2 INV - FS 0~1 ±1% 0.005

Valve - FS 0~1 ±1% 0.005
3 Temp. °C FS 0~100 ±0.1% 0.05

Flow m3/min FS 0~20 ±0.1% 0.01
Power kW FS 0~500 ±0.1% 0.25
INV - FS 0~1 ±0.1% 0.0005

Valve - FS 0~1 ±0.1% 0.0005
Pressure kPa FS 0~500 ±0.1% 0.25

* Temp.: Temperature, INV: Inverter frequency, Valve: Valve opening

** FS : full scale, RD : reading
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Table 1. Uncertainty modelling.

Fig. 7. Uncertainties in the simulation.

Fig. 8. Monitored SCOP distribution derived from uncertainties.

Fig. 9. True SCOP distribution derived from uncertainties.

Fig. 10. SCOP distribution derived by adding uncertainties 
to the SCOP without uncertainties.
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determined from the simulation without considering 
uncertainties was 4.96 and the average value from the 
distribution was 4.94. Based on the 90% confidence
interval, one can assume that the system does not have any 
obvious faults that severely affect SCOP.

Five other distributions were also generated to provide 
a comparison with the above result. One was generated 
from the same simulation corresponding to Fig. 8.
However, SCOP was calculated from the true values (Fig.
9). It has long tail on the left side and the average of SCOP 
was 4.95, which was slightly smaller than the SCOP value 
without uncertainties.

Because the SCOP value in Fig. 9 was calculated from
the true values in the simulation result, the distribution in 
Fig. 9 cannot be reliably compared with the monitored 
data. However, the longer tail on the left side and smaller 
average than SCOP without uncertainties imply the 
uncertainties worsen SCOP.

One distribution was generated from the simulation 
result without considering uncertainties by adding the 
uncertainties to items affecting SCOP such as power 
consumption, chilled water supply and return temperature, 
and chilled water flow rate (Fig. 10). Here, as in Fig. 8, 
the uncertainties were based on the parameters described 
in Table 1 and were changed every 2,000 calculations.
The distribution in Fig. 10 is narrower than in Fig. 8,
because it did not consider the interaction of uncertainties 
in the system. In addition, it does not have a longer tail 
and biased average as a matter of course. Therefore, the 
distribution in Fig. 8 is appropriate for fault detection.

Figures 11 to Fig. 13 show cases where uncertainties 
occur only at sensors, actuators, communication 
equipment, respectively. Fig 11 is most similar to Fig. 8,
which means uncertainties at sensors are the major 
uncertainties in the system. In addition, uncertainties at 
sensors interactively influence the controls. The 90% 
confidence interval in Fig.11 was 4.71 to 5.20, thus 
incorporating uncertainties in sensors is only effective for 
simple modelling. Regarding uncertainties in actuators, 
the uncertainties hardly affect system control over the 
system, except in the case where it is controlled to 0% or 
100%. This occurs because the actuator is controlled with 
the PI controller with reference to the control target and 
its set value, which is not an actuator itself. As for 
uncertainties at communication equipment, the accuracy 
range in communication is narrower than that in the 
sensors and actuators (Table 3).

4.2 Distribution of daily SCOP in 2007

To analyse variations in the distributions caused by 
operation conditions, the 90% confidence interval during
each day of the target week was calculated (Fig. 14). In 
addition to SCOP without uncertainties, the 5% point was 
also variated each day. Regarding the range of the 90% 
confidence interval, the narrowest interval ranged from -
4.7% to +5.1% (Tuesday), compared to the SCOP value 
without uncertainties. For comparison, the widest interval 
ranged from -8.7% to +10.6% (Saturday).

Because the target system stores and releases heat 
every day based on the heat load, the operation pattern is

primarily classified into four types: weekday after holiday 
(Monday), holiday after weekday (Saturday), normal 
weekday (Tuesday, Wednesday, Thursday, Friday), and 
normal holiday (Sunday). Because the SCOP values from 
Tuesday to Thursday are close to each other, operation 
pattern influences SCOP and the confidence interval.

Regarding the monitored data, the tendency observed
in the fluctuation was the same as that observed from the 
simulation. However, SCOP on Monday was much higher 
than the corresponding result from the simulation. This
was assumed to be caused by the difference in the set 
values, which determines when heat charging should end
based on the amount of heat stored in the tanks. In the 
simulation, the amount of heat stored on Monday was 
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Fig. 11. Monitored SCOP distribution derived from uncertainties 
in sensor measurements.

Fig. 12. Monitored SCOP distribution derived from uncertainties 
in actuators.

Fig. 13. Monitored SCOP distribution derived from uncertainties 
in communication equipment.

Fig. 14. Daily SCOP distribution derived from uncertainties and 
the monitored data.
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smaller than in the real system, and the reverse was true 
on Tuesday. This produces the difference in Fig. 14. 

4.3 Distribution of supplied heat and total power 
in a day of 2007

Wednesday is a normal weekday for the system and 
the SCOP value derived from the monitored data was 
found to be appropriate (Fig. 14), thus the time series data 
for Wednesday were analysed (Fig. 15). 

Regarding time series analysis, the monitored 
supplied heat data was between the lower and upper 5% 
points, and was nearly the same as the value without 
uncertainties (Fig. 15. (a-1)). This occurs because the 
supplied heat determined from the monitored data was 
input to the simulation. However, the total power was 
varied, as confirmed from the lower and upper 5% points
(Fig. 15. (b-1)). The uncertainties influenced the heat 
storage and discharge control, which changes control of 
refrigerators.

In stable control, both the supplied heat and total 

power at 13:00 were distributed in a narrow range (Fig. 
15. (a-2), (b-2)). The monitored supplied heat was nearly 

the same as the value without uncertainties, but the total 

power was lower than the value from the distribution. 

Although the control states at 13:00 were close, power  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consumption was inconsistent because of variations in 

factors such as pump efficiency, pressure loss. 

Control around 17:30 was unstable in the simulation 
because the refrigerators started operating (Fig. 15. (a-3), 
(b-3)). The time step of the simulation was 1 min, whereas
PI control requires tens of minutes in order to produce a 
drastic change. In addition, it should be noted that the 
monitored data was converted into 15 min segments. 

Considering results in Sections 4.2 and 4.3, even 

though weekly SCOP is within the distribution, a real 

system could operate differently from the behavior shown 

in the simulation results, which represents the ideal 

control states. In this case, the difference is not so large 

that it can be regarded that obvious faults occurred in the 

system from the perspective of SCOP. When managing 

multiple buildings simultaneously, the distribution shown 

in Fig. 8 is effective for evaluating the performance of all 

the buildings. Then, buildings can be managed more 

efficiently by preferentially analysing data from buildings 

whose monitored data are far from the distribution. 

4.4 Fault detection in a week in 2015

Fig. 8 demonstrates that the target system did not have 

obvious faults over the course of a representative week in 

2007. Subsequently, the same method was applied to the 

representative week, from 22:00 on August 1, 2015 to
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(a-1) Supplied heat.

(a-2) Distribution of supplied heat (13:00).

(a-3) Distribution of supplied heat (17:30).
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21:59 on August 8 in 2015, when more than eight years 

had passed since the building was completed. 

As a result, the SCOP value without uncertainties, 

lower 5% point, and the upper 5% point was 4.65, 4.42, 

4.92, respectively. The SCOP value determined form the 

monitored data was 4.18 (Fig. 16). Therefore, the real 

system has faults from the perspective of SCOP. 

The periods in Fig. 8 and Fig. 16 were different years, 

but the seasons were almost the same. However, the 

SCOP value without uncertainties in 2015 was lower than 

that in 2007 by 0.31 (6.3%). This is assumed to be caused 

by the boundary conditions, such as load and sewage 

temperature. Using the proposed method, it is possible to 

evaluate system performance while considering the 

boundary conditions that changes every day. 

As an example of fault analysis, the estimated heat 

exchange areas from 2007 and 2015 were compared (Fig. 

17). In the simulation, the outlet temperature at the heat 

exchanger was calculated based on heat transfer 

principles (equations (3)-(5)). Using the same principles 

and the monitored data (that includes inlet and outlet 

temperatures and flows at the hotter and colder sides, 

respectively), the exchange areas were estimated every 15 

min. It should be noted that the heat exchange area itself 

does not change. As a parameter representing the 

performance of the heat exchanger, the heat exchange 

area was estimated from the measured value on the 

assumption that the heat transfer coefficient did not 

change. It is clear that the estimated heat exchange area in 

2015 is smaller than that in 2007. If the estimated area at 

the heat exchanger named CHEX (see Fig. 1) becomes 

small, higher flow is required to transfer the same amount 

of heat, thus, increasing the required pump power. The 

reason the area at night is lower than that during the day 

is that the amount of heat exchanged at night is very small. 

The proposed method is effective for detecting faults 

in the system. However, it cannot diagnose what kind of 

faults occurred in the system. Therefore, FDD is the next 

step required in this research. 

5 Conclusion and implications 
The distribution of SCOP values for a heat source 

system over the course of a representative week was 

elucidated using a detailed simulation, which incorporates 

interactions among uncertainties in sensor measurements, 

DDCs, and actuators. The 90% confidence interval of the 

distribution was approximately 10% of the SCOP value 

calculated without uncertainties. Performance evaluation 

and fault detection were performed using the distribution 

and its confidence interval. 

Regarding the distribution, the effect of uncertainties 

at the sensors was dominant compared to those at the 

DDCs and actuators. The uncertainties at the actuators 

hardly affected the SCOP value because the true value at 

the actuator is different from the indicated value, while 

the actuator is PI controlled with reference to the control 

target. Therefore, uncertainties in the sensor 

measurements are the most important factor determining 

whether a heat source system can operate efficiently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In addition, distribution analysis was implemented 

over the periods of a week, day and minute. One day and 

minute were too short to provide an accurate comparison 

with the monitored data, because the control state can be 

easily changed by modifying the set values, which do not 

cause severe degradation. 

However, there is a possibility that this method cannot 

be used to detect faults whose influence is small. 

Therefore, this method is effective for detecting faults that 

have a large influence on the system. Further, this method 

is effective in the case where multiple systems are 

managed simultaneously and a system with significant the 

performance degradation should be analysed 

preferentially. 

FDD is required to for locating and eliminating faults, 

respectively, to achieve the most efficient operation of a 

heat source system. The proposed method is appropriate 

for detecting degraded system performance. Therefore, 

fault diagnosis and elimination will be the focus of future 

research. 
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Fig. 16. Fault detection by the distribution in a 
representative week in 2015.

Fig. 17. Comparison of the monitored data between 2007 
and 2015 (estimated heat exchange area at CHEX).
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