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Abstract. In hydronic heating systems, a mixing loop is used to control the temperature and
pressure. The task of the mixing loop is to provide enough heat power for comfort while minimizing
the cost of heating the building. Control strategies for mixing loops are often limited by the fact that
they are installed in a wide range of different buildings and locations without being properly tuned.
To solve this problem the reinforcement learning method known as Q-learning is investigated. To
improve the convergence rate this paper introduces a Gaussian kernel backup method and a generic
model for pre-simulation. The method is tested via high-fidelity simulation of different types of
residential buildings located in Copenhagen. It is shown that the proposed method performs better
than well tuned industrial controllers.

1 Introduction

In Europe buildings account for 40% of the total energy
usage. In the residential sector space heating accounts for
66% of the building energy consumption[1]. It is predicted
that scheduling and improved control can lead to savings
of 11-16% [2]. This huge savings potential is the reason
that building control keeps being an active research area,
see reviews [3] and [4]. In this work the focus is on
building heating via mixing loops. Mixing loops are used
to ensure proper comfort, heat power utilization and energy
savings in buildings. Low heat power utilization leads to
low efficiency in the supply coming from district heating.
It has been shown that lowering the return temperature by
10oC gave a heat loss reduction of 9.2% and pump energy
reduction by 56% at the district heating plant [5]. So why is
this important for the end user? The district heating plants
are starting to enforce proper heat water cooling through
added fees on a high return temperature. Ensuring proper
heat power utilization in the control of the mixing loop
can therefore also help reduce the end costumers cost of
heating the building.

A lot of research has been done on optimal building
thermal control, often in the form of Model Predictive
Control (MPC). Examples of this are [6] and [7]. Here
large savings was shown by using an MPC compared to
traditional control strategies. The disadvantage of MPC is
the reliance on accurate models of the building, especially
when the product is installed into many different buildings.
Different methods for identifying models of the building
using data for MPC has been been explored. In [8] artificial
neural networks are used for building the model for MPC,
while in [9] subspace methods are used. In this work an
alternative approach for learning optimal control through
data will be investigated by using reinforcement learning
to control a mixing loop. The result in [10] show that rein-
forcement learning is competitive with an MPC on a power
system even when a good model is available. Even though

Reinforcement Learning has been around for a long time,
recent results have increased its popularity. This attention
is mainly brought on by the Reinforcement Learning algo-
rithm AlphaGo’s ability to learn, tabula rasa, how to beat
the world champion of the game Go [11]. Reinforcement
learning has also been tried on HVAC applications. In [12]
reinforcement learning was used to control passive and
active thermal storage. Simulated reinforcement learning
was used where the controller is getting priori knowledge
from simulation. The result in [13] showed savings in heat-
pump thermostat control by using reinforcement learning.
In [14] a batch reinforcement learning method was used to
control a heat-pump.

In reinforcement learning the rate of convergence to-
wards optimal control is an issue, since it often requires
a lot of training. In this work a Gaussian kernel backup
rule is suggested to improve initial convergence in tabu-
lar Q-learning. Kernel based methods have been used in
reinforcement learning, but mostly in regards to function
approximation methods such as in [15].

The paper starts with an introduction to Reinforcement
Learning in Section 2. The concept of building heat supply
via a mixing loop is provided in Section 3. In Section
4 the proposed method using Gaussian kernel backup in
Q-learning is presented. Section 5 explains the simulation
setup. The results are presented and discussed in Section
6. The paper ends with the concluding remarks in Section
7.

2 Preliminaries
In this section reinforcement learning will be introduced.
For a more thorough description see [16]. In Fig. 1 is
a general reinforcement learning setup where an agent
interacts with an environment.
The environment is in a state St at time t. ”States” is
here meant as all the information the agent receives about
the environment. The environment also sends out a reward
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Fig. 1. Agent-environment interaction [16].

determining the instantaneous value of being in this state.
The agent seeks to maximize the cumulative reward called
the return [16]

G=̇
T−t−1

∑
k=0

γ
kRt+k+1 (1)

where γ is the discount factor that lies in the interval
0 ≤ γ ≤ 1. A higher discount factor will cause the agent
to strive for longer term return, but will also increase
the convergence rate of the learning agent. T is the final
time step. For episodic task this is the end time, but for
continuing tasks T = ∞. Having both γ = 1 and T = ∞ is
not feasible as this would lead to infinite return.

The agent uses a policy, πt , which goal is to maximize
the return. The policy maps the states to an action, hence it
is similar to a control law. The mapping can be of stochastic
nature or deterministic.

The next element of Reinforcement learning is the value
function [16]

Vπ(s)=̇E [Gt |St = s] (2)

The function describes that if starting in state s and
continuing to follow policy π , the expected return will be
Gt .

By adding onto the value function we get the state-
action value function

Qπ(s,a)=̇E [Gt |St = s,At = a] (3)

Which describes the expected return of being in state s,
taking action a and afterwards follow policy π .

The goal in reinforcement learning is to find the optimal
policy. This is often done through policy iteration by
alternating between evaluating Vπ using π and improving π

using Vπ . A greedy policy is a policy that always chooses
the action which yields the highest return and is defined as

πg(s)=̇argmax
a

q(s,a) (4)

Such a policy fully exploits the current state-action value
function, but the downside is that it does not explore and
perhaps updates the state-action value function in such a
way that the policy can be improved. This is the recurring
problem of exploitation versus exploration. Proofs of con-
vergence towards optimality often relies on exploration for
reinforcement learning methods. So both exploitation and
exploration needs to be done. A simple way to achieve that
is the ε-greedy method. Here the greedy action is chosen
with probability 1− ε and the rest of the times a random
action is taken to explore.

The last element introduced is the learning rate, α ,
chosen from 0 < α ≤ 1. This determines how much the
newly learned information will override older information
when updating the value function. In an environment that is

fully deterministic the best learning rate is simply 1. Intro-
ducing stochastic behaviour such as noise or disturbances
not contained in the states changes this towards supporting
a lower learning rate.

3 Building Heat Supply via Mixing Loop
The Mixing Loop application is here described in short.
This is done to get an understanding of the system, which
is necessary for describing a reward function and choosing
states and actions for the Q-learning. A simple model of
the application is here described by a building with only
one zone with one radiator as seen in Fig. 2.
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Fig. 2. Simple schematic of mixing loop application

The zone temperature is controlled by a thermostatic
valve. The heat power is supplied via a mixing loop
from district heating. The change in zone temperature is
here described as the difference between heating, load and
disturbance powers

CzṪz = Φh +ΦL +Φd , (5)

where Cz is the heat capacity of the zone and Tz is the zone
temperature. Φh/L/d are the heating, load and disturbance
powers. The load power is the cooling acting on the zone
from outside the building envelope. The disturbance power
is all the remaining power acting on the system, also
referred to as free heat. The majority of the disturbance
power is created by the occupancy of the house and electric
appliances.

The heat power is supplied by a radiator, which is here
described as

Φh =Cr

(
Tf +Tr

2
−Tz

)n

, (6)

where Cr is the thermal conductance of the radiator, Tf
is the forward water temperature, Tr is the return water
temperature and n is a radiator constant. The heat power
can also be described via the heating water as

Φh = cwq
(
Tf −Tr

)
, (7)

where cw is the volumetric heat capacity of the heating
water and q is the volume flow rate.

Via these two equations for heat power, the return
temperature can be solved for, whereby the dependencies
for heat power are

Φh = f
(
q,Tf ,Tz

)
. (8)

The flow rate

q = g(u)
√

∆p, (9)
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is a function of the thermostatic valve’s opening degree u
and the differential pressure ∆p.

Typically a P controller determines the opening degree
of the valve

u = Kp
(
Tre f −Tz

)
, (10)

Where Kp is the proportional gain and Tre f is the reference
temperature set by the user.

The mixing loop controls Tf and ∆p. By opening the
control valve and mixing hot water at temperature Ts
with return water having temperature Tr in a ratio that
gives the desired Tf , see Fig. 2. ∆p is controlled solely
by the pump speed since the mixing loop hydraulically
decouples the zone from the supply. The objective is to
supply enough heating power for the system to keep the
reference temperatures. By looking at (8) and (9) it can be
seen that while the thermostatic valve controls the heat
power, Tf and d p influences the gain of the controller.
This means that by controlling Tf and d p only the gain
of the thermostatic control can be influenced, except for
saturation situations which is what is utilized for setback.
The objective providing enough heat power has to be kept
without increasing the pump pressure too much or increas-
ing the return temperature leading to energy losses in the
heat distribution. By (5) knowing the load and disturbance
power heat power could be controlled as Φh = ΦL +Φd .
The caveat of controlling by balancing the heat load is that
if any unaccounted disturbance happens the thermostatic
valve will be in saturation and will not be able to reject
the disturbance. In mixing loop control it is not desirable
to control in ways that eliminates the thermostatic valve’s
disturbance rejection.

The reward defines the control objective. For heating
systems two features are important to optimize: comfort
and cost. However, these two features can be described in
various ways. For cost it is chosen to include the cost for
the pump power, and the cost for the heat power. Other
costs that could be included could be the cost of wear and
tear of components such as the pump, pipes and valves or
commissioning time when installing the HVAC system, but
these are not included in this work.

The pump power cost is calculated as

ψpump = ΦpumpΩe, (11)

where ψpump is the pump power cost, Φpump is the pump
power consumption and Ωe is the price of electric power.
In this work Ωe is kept constant at 0.27e/kWh. If e.g. load
shift is desired this should of cause be changed to a time
dependant price. In this work the heat source is district
heating, where a high return temperature reduces the effi-
ciency, mainly through added heat losses in the distribution
network. District heating companies often penalize high
return temperatures by increasing the heat power cost as
a function of cooling of the heating water. The additional
cost is added differently dependent on the district heating
company. In this work it is done like the district heating
company in Copenhagen, ”HOFOR”, implements this [17].

ψheat = ΦheatΩheatη . (12)

Here ψheat is the heat power cost, Φheat is the heat
power used, Ωheat is the base price of the heat power at

88.9e/kWh, and η is a price correction for cooling of the
heating medium calculated as

η = 1−
(

1
125

(Ts−Tr)+
33

125

)
(13)

This means that the price of the heat power increases 0.8%
per oC that the cooling of the heating medium is lower than
∆33oC.

The heat comfort can be measured in different ways;
here, the highest zone temperature error is used

emax(t) = max
i∈{1,··· ,nz}

∣∣Tre f −Tz,i(t)
∣∣ , (14)

where nz is the number of zones. This ensures the lowest
maximum error. Other ways of describing comfort can be
the number of times temperatures exceeds a given bound.
In this work only night setback is used, but other setback
periods can be used via calendar functions or leaning
patterns of the inhabitants. The difficult part about night
setback is that it is dependent on the specific building.
Both how much and for how long the temperature can
be changed while ensuring comfort when setback ends
varies. Not only from building to building, but also as
a function of other states such as outside temperature.
When reheating after a setback an optimal reheat ”speed”
is also important otherwise high return temperature will be
imposed due to high flows and forward temperature. High
return temperature during reheating is costly since a high
amount of heat power is being consumed. Doing this in
an optimal fashion should be learned by the reinforcement
learning agent.

4 Q-learning with Gaussian Kernel
Backup

4.1 Q-learning

The reinforcement learning method used here is Q-learning.
Q-learning was first described in [18] and is defined by the
backup

Q(St ,At)← Q(St ,At)+α [Rt+1 + γ maxa Q(St+1,a)−Q(St ,At)]

(15)
A strength of Q-learning is that it directly finds the value of
taking an action in a given state and afterwards following an
optimal policy. This makes it model-free as no transition
model of the environment is needed. A requirement for
convergence towards the optimal policy is that all state-
action pairs continue to be visited and updated. The formal
proof of convergence can be found in [19]. To ensure
convergence the ε-greedy method is used with ε = 0.1.

Q-learning is here single-step, as seen by the term
[maxa Q(St+1,a)], but can be extended to multiple steps.
The learning rate α is set to 0.2 and the discount rate to
0.4.

In this work a tabular version of Q-learning is used to
ensure convergence. This is feasible when keeping a low
dimensionality of the state-action space, Q. The state action
space used can be seen in Table I.
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4.2 Choosing Reward

The reward function of a mixing loop is a multi goal reward
system where it seeks to supply the best heat comfort for
the building while minimizing cost. When it is deemed
that setback can be used, the heat comfort goal vanishes
and only the cost remains. The cost that the agent should
minimize is the combined cost of the heat and pump power.
Due to this multi objective reward a weighting factor, β , is
needed, which determines the scaling between improving
heat comfort and minimizing cost. In this work β = 0.5
unless otherwise stated. The reward then becomes

R(t) =

{
−(emax(t)2 +β (ψheat(t)+ψpump(t))) 6≤ t mod(24h)≤ 21
−β (ψheat(t)+ψpump(t)) otherwise

Here emax is the maximum temperature error out of
all the zones, squared to punish larger errors harder. Heat
power cost ψheat and pump power cost ψpump was described
in (12) and (11). Additionally a soft constraint is added
such that low reward is given if any zone temperature goes
below 16oC.

Recall that the reinforcement learning seeks to maxi-
mize the cumulative reward. This ensures that an action
that decreases power and therefore increases the reward
during setback is only good if the building can reach the
heat comfort giving high reward when setback is off.

4.3 Choosing States and Actions

As seen in section 3 there are a lot of states that would
give added information for the agent. However in this
work the focus is on making the minimal state-action
space due to working with tabular methods where the
state-action space and therefore learning rate suffers
greatly from the curse of dimensionality. Another reason
for keeping the state space small is the sensors needed
for the information. Choosing the states is done by the
definition given by [20]:

A state variable is the minimally dimensioned function
of history that is necessary and sufficient to compute
the decision function, the transition function, and the
contribution (here the reward) function.

This selection is here done from the knowledge of the
application, but could also have been done via correlation
investigation.

States Size of dimension Range

Outside Temperature 21 -20 to 20 [oC]
Time of day 24 1 to 24 [hours]

Actions Dimension Range

Pump Diff. Pressure 5 0 to 0.4 [bar]
Forward Temperature 31 15 to 75 [oC]

TABLE I
STATE-ACTION SPACE

To ensure the zone temperatures enough heat power
should be available for the thermostats. The needed heat
power is a product of the load and the free heat, where
the load is given by the outside temperature and the

free heat given by multiple factors. Due to this To was
chosen as a state. The free heat is not added explicitly
in states in this work to reduce dimensionality, but later
work could explore inclusion of indicators such as number
of inhabitants present, solar radiation or electric appliances.
Time is added as a state as R(t) depends on it. Furthermore
time of day can also capture periodic phenomenons, for
example if free heat contains daily patterns.

The actions for the mixing loop application are the
forward temperature and differential pressure, see section
3. Due to the nature of pumps the pressure is limited at
higher flows. In the situation where the set point from
the controlling agent is higher than the pump can supply
it is set to max. The minimum forward temperature is
15oC however due to the nature of a mixing the lowest
forward temperature that can be supplied is the same as
the return temperature at that given time. In the same way
the maximum temperature is only as high as the supply
temperature which in this case is controlled to 75oC. So
when choosing a forward temperature the agent can only
choose from Tr(t)<= Tf (t)<= Ts(t).

4.4 Gaussian Kernel Backup and pre-simulation

In tabular reinforcement learning using the Q-learning
backup rule, the situation can occur where one specific
state-action pair has been visited multiple times, but one
in vicinity has never been explored. In this case there
would be no knowledge of the state in the immediate
vicinity since it has never been visited. Due to the priori
knowledge of the ”smoothness” of the application there
must be knowledge to be gained about the optimal action
in S2 from the knowledge about S1. This comes naturally
when using function approximations such as kernel-based
methods, but not in the tabular case. To gain increased
convergence rate a Gaussian kernel is therefore applied to
the backup process. Instead of only doing backup of the one
state-action pair, backup is done on all state-action pairs
with decreased learning rate the further the state is from
the visited state. The learning rates are distributed using a
Gaussian kernel. First two indexing vectors are introduced.
xt is the vector describing the location in the state-action
tabular Q(S,A) at time t. It contains the index for each
dimension. x is the vector describing the location of the
state-action pair that is being backlogged to. Both has the
dimension n× x, where n is the sum of states and actions,
in this case 4.

Now the backup is done to all state-action pairs using
the following backup rule

Q(x)← Q(x)+αKσ (xt −x) [Rt+1 + γ maxa Q(St+1,a)−Q(St ,At)]

(16)
Where Kσ is calculated using the Gaussian kernel

Kσ (xd) = exp
(
−|xd |2

2σ2

)
(17)

In this work σ = 1 and is lowered as time passes. As σ

decreases the method will converge to classical Q-learning.
In Fig. 3 an example of a surface between a state and an
action in a trained Q state space with and without Gaussian
kernel backup can be seen.
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Fig. 3. Q surface compare without (left) and with (right) Gaussian kernel
backup

Besides adding a Gaussian kernel pre-simulation is
done to increase the initial performance of the controller.
The pre-simulation is done via the generic model described
in Eq. (5) to (10). The reason that a simple generic model
is suitable for the initial guess, is that it should work for
all the different buildings the product is installed to. The
generic model was tried on the different buildings described
in the next section and performed satisfactory. An example
of this can be seen in the results Fig. 5.

5 Simulation Setup
The testing of the algorithm is done via simulation on
high fidelity building models. The building model is made
using the Modelica library ”Buildings” [21]. To show the
learning ability of the controller, it is used on three different
buildings; House from 2015, house from 1960, apartment
from 2015 and apartment from 1960. Fig. 4 shows the
two floor plans of the house (230m2) and the one of the
apartment (68m2).

Free heat from metabolism, electronics and hot water
usage is modelled from typical daily, weekly and monthly
patterns of usage. The difference between 2015 and 1960
buildings is the standard building materials of the time and
standards for insulation, where Danish buildings from 2015
has a higher degree of insulation. Danish building code is
used from each of the periods. The three buildings are situ-
ated in Copenhagen Denmark. For comparison some indus-
trial standard controllers are used. There are typically four
different tuning parameters to be chosen for the industrial
controls. All buildings are supplied by 6 m head pumps.
The industrial controllers are running proportional pressure.
This means that the pressure rises proportional to the flow.
The first parameter is the 3 different levels of proportional
control that can be chosen on the selected pump. The
next parameter is the outdoor temperature compensation.
Here a saturated linear relation between outdoor - and
forward temperature is often used. Besides this relation
there is often a first order filter applied to the compensation

Bath

Kitchen

Hall

Livingroom

Livingroom

Bath

Room

Room

Bedroom

1. floor house 2. floor house

Bath

Bedroom

Kitchen +
Livingroom

Apartment

S

N

E W

Fig. 4. Floor plans of house and apartment.

with a time constant, that is the third parameter. The time
constant should be matched to compensate the dynamics
of the building. If the compared industrial controller is
without outdoor compensation then a notation of NW is
used. The last parameter is a constant temperature that is
to be subtracted from the outdoor compensated forward
temperature during setback. Two setback temperatures are
used; 15oC and 30oC and will be noted as such in the
comparison tables. The pump curve, outdoor temperature
compensation and filtering is tuned to the specific buildings
to give a comparison against well tuned controllers. The
tuned controller for modern house is C1, old house C2
and modern apartment C3. For all setback controllers, the
setback period is between 9 p.m. and 6 a.m.

When comparing controllers the most important mea-
sure of the optimality of the controller is the returns, see
(1). Normalized return is used which is the cumulative re-
ward measured every 5 min. over the heating season. Here
the heating season is chosen to be the 9 months September-
May. For comparison of the controls the discount rate
for this return is 1 meaning that all rewards during the
heating season counts as equal. The return is normalized
by the number of samples for readability. To also be able
to compare the controllers directly on the comfort and cost
two other measurements are given in the results, the Root
Mean Square Error (RMSE) and the cumulative cost of
running the system during the heating season.

6 Results & Discussion
In this section results showing the improvement of adding
Gaussian kernel backup and pre-simulation will be shown.
The results is a comparison with the industrial standard
controllers. It is important to emphasize, when evaluating
these results, that the industrial benchmark controller such
as e.g. C1− 30 has been carefully tuned for the specific
house, which rarely is the case for real world buildings.
This means that achieving performance as good as C1−30
via a self learning controller results in a much better perfor-
mance than what is experienced in worse tuned buildings.
In Fig. 5 the convergence of the reinforcement learning
controller is shown for standard Q-learning backup, with
Guassion Kernel backup, and finally adding pre-simulation.
For each training duration, in interval of 1 month, the
controller is run for a full heating season and the norm.

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5013 13

5



10 20 30 40 50 60

Training Duration [Months]

-6

-5

-4

-3

-2

-1
N

or
m

. R
et

ur
n

Gaussian Kernel Backup
Classic Q-learning Backup
Pre-simulation
C1-30

Fig. 5. Norm. Returns as a function of training duration.

return for that training duration is calculated. In this way it
can be seen how the controller agent improves as a function
of training duration. It can be seen that using the Gaus-
sian kernel backup improves the initial performance until
approximately the 18th month. Furthermore the Gaussian
kernel backup improves the ”stability” of the convergence,
where the classic Q-learning deteriorates in periods, e.g.
from 30-36 months. This graph also show the problem of
learning Tabula Rasa. It takes around 30 months before
reaching a satisfactory performing agent as the industrial
controller C1-30, which is not feasible. Initialization using
a priori knowledge by pre-simulating on the generic model
provides a better initial controller. More work still needs
to be done into increasing convergence rate, since training
time still takes too long. The next results are comparisons
of performance after 60 months.

In table II a comparison of the trained Q-learning agent
with industrial standard controllers is shown. In parenthe-
sis is the relative improvement the Q-learning provides
compares with the industrial controller. The Q-learning
agent manages to save energy in all scenarios. Only in
two scenarios does the comfort decrease slightly, while
gaining large savings. In the modern house the C1−30 is
the best industrial controller measured in return. Compared
to this the improvement in comfort and cost from using
the Q-learning agent is 4.5% and 3.2%. Had the industrial

Modern House - Copenhagen

Controller Norm. Return RMSE [oC] Cost e

Q -1.06 1.27 971
C1-15 -1.25 1.31 (3.1%) 1056 (8.0%)
C1-30 -1.19 1.33 (4.5%) 1003 (3.2%)
C1-30-NW -1.29 1.39 (8.6%) 1018 (4.6%)

Old House - Copenhagen

Q -0.96 1.12 1920
C2-15 -1.25 1.11 (-0.9%) 2128 (9.8%)
C2-30 -3.24 1.20 (6.6%) 1985 (3.3%)
C2-30-NW -4.13 1.26 (11.1%) 2022 (5.0%)

Modern Apartment - Copenhagen

Q -0.61 0.96 492
C3-15 -0.72 0.94 (-2.1%) 539 (8.7%)
C3-30 -0.74 0.96 (0.0%) 512 (3.9%)
C3-30-NW -0.77 1.03 (6.8%) 521 (5.6%)

TABLE II
COMPARISON OF CONTROLLERS WITH SETBACK.

controller been tuned worse for the modern house by
choosing a setback constant of 15 the savings would instead
be 8%.

Fig. 6 shows an example of the time series data of
one of the zone temperatures with the Q-learning agent
and with the best tuned industrial controller C1− 30 is
shown. The Q-learning agent manages to increase energy
savings by increasing the temperature reduction during
setback. The Q-learning does this without violating com-
fort requirements by starting the reheating before leaving
setback mode. If an increased comfort is desired the tuning
parameter β in the reward function can be adjusted. To see
how tuning β affects the performance, see Fig. 7. Here it
is shown that the the agent with lower β starts to lower the
temperature later to keep the comfort higher before setback
occurs. Likewise it raises the temperature earlier before
leaving setback to increase comfort. Recall that the agent
is controlling forward temperatures and pressure, while a
thermostat controls the zone temperature. It is by forcing
the thermostat into saturation that the lowering of the zone
temperature is possible from the mixing loop. Since the
thermostat is a p-controller there will be a temperature error
which is quite noticeable at around 5 o’clock in Fig. 7.
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Fig. 6. Example of zone temperature during setback. Padded line is
during setback the constraint and out of setback the set-point.
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Fig. 7. Comparison of setback example with different β

If setback is disabled the Q-learning agent still manages
to save cost while achieving comparable comfort compared
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Modern House

Controller Norm. Return RMSE [oC] Cost e

Q -2.01 1.23 1029
C1 -2.12 1.21 1076 (4.4%)

TABLE III
COMPARISON OF CONTROLLERS WITHOUT SETBACK

to the well tuned controller C1 in the modern house,
which can be seen in table III. By comparing cost of
the Q-learning agent with and without setback it can be
seen that a saving of 5.6% is achieved through setback
in the modern house. Comparing the industrial controller
C1 without setback with the Q-learning agent with setback
leads to 9.8% savings.

7 Conclusion

The motivation for this work is to investigate the perfor-
mance of the reinforcement learning method Q-learning on
building heating through mixing loops, while improving
on the method by adding a Gaussian kernel backup and
pre-simulation on a suggested generic model. In this work
it was shown that even with the minimal information
via a limited state-action space the reinforcement learning
converges to a better performance than industrial standard
controllers. Funnelling more information into the agent,
such as free heat indicators, should increase the perfor-
mance even further. However adding more information will
decrease the convergence rate. To improve the convergence
rate of Q-learning a Gaussian kernel backup method was
added. Adding the Gaussian kernel added increased initial
convergence rate, but even with the added convergence rate
it still took 30 months to reach a satisfactory performance
of the agent. By further adding pre-simulation on a generic
model the initial controllers performance was greatly en-
hanced. The convergence rate however is still low, and need
further improvement.
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