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Abstract. In most conventional forced-air systems, the guidelines for the air handling unit(AHU) discharge 

air temperature(DAT) are not fully established and thus AHU DAT are constantly fixed to a particular set-

point, regardless of dynamic changes of operating variables. In this circumstance, this study aimed at 

developing a control algorithm that can operate a conventional VAV system with optimal set-points for the 

AHU DAT. Three-story office building was modeled using co-simulation technique between EnergyPlus and 

Matlab via BCVTB(Building Controls Virtual Test Bed). In addition, artificial neural network(ANN) model, 

which was designed to predict the cooling energy consumption for the upcoming next time-step, was 

embedded into the control algorithm using neural network toolbox within Matlab. By comparing the predicted 

energy for the different set-points of the AHU DAT, the control algorithm can determine the most energy-

effective AHU DAT set-point to minimize the cooling energy. The results showed that the prediction accuracy 

between simulated and predicted outcomes turned out to have a low coefficient of variation root mean square 

error (CvRMSE) value of approximately 24%. In addition, the predictive control algorithm was able to 

significantly reduce cooling energy consumption by approximately 10%, compared to a conventional control 

strategy of fixing AHU DAT to 14℃. 

1 Introduction 

According to the World Meteorological Organization’s 

Greenhouse Gas Bulletin in 2017, the average global 

atmospheric carbon dioxide level in 2016 was 403.3ppm. 

What is more problematic is that the concentrations of 

nitrous oxide and methane, which accelerate global 

warming more than carbon dioxide, are also increasing 

day by day.[1] As a result, recognizing the worldwide 

severity, we have agreed to reduce greenhouse gas 

emissions, including carbon dioxide, through the 2015 

Paris Climate Change Convention.[2] In Korea, building 

energy conservation projects such as energy saving plan, 

building energy efficiency class certification, and zero 

energy building are being carried out.[3] However, there 

is no energy saving guideline for the heat pump control 

that is applied to most office buildings. In the case of 

office buildings in Korea, cooling energy accounts for a 

large portion of annual energy consumption. Moreover, 

about 57% of the cooling energy uses electricity, which 

causes greenhouse gas increase.[4] Therefore, this study 

proposes a new control guideline for AHU(Air Handling 

Unit) DAT(Discharge Air Temperature) in heat pump. In 

the case of AHU, it is mostly fixed control at a specific 

temperature regardless of load conditions. Therefore, this 

study adopted ANN(Artificial Neural Network)-based 

control method which is increasingly applied to solve 

complex problems in various fields due to its ability to 

learn and analyze mapping relationships including non-

linear phenomena. ANN enables more accurate 

predictions than the mathematically analytical model 

through its adaptability to external changes. In addition, it 

is able to predict the optimal variables for optimal control 

to implement an accurate and efficient control. Based on 

this, this study aims to analyze cooling energy reduction 

effect during summer according to AHU DAT optimal 

control by using ANN model. 

2 Research Method 

2.1. Simulation Overview 

This study used EnergyPlus, a program developed by the 

U.S. Department of Energy based on the combined 

advantages of BLAST and DOE-2.[5] In addition, 

MATLAB / Simulink, which provides the Neural Network 

Tool Box function, was used to implement ANN. We use 

the BCVTB program to simulate real - time interworking 

of these two programs. This enables real-time simulation 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5014 14

   © The Authors,  published  by EDP Sciences.  This  is  an open  access  article distributed under the  terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/). 

mailto:kwhlee@hanbat.ac.kr


 

of EnergyPlus and MATLAB / Simulink, enabling more 

accurate analysis. 

2.2. Simulation Model 

In this study, the size of the target building for simulation 

is 52m X 35m(1,820m2), and the floor-to-floor height of 

the 3-story office building is 4m. The building to be 

analyzed was selected as a virtual office building with a 

WWR(window-to-wall ratio) of 30%. 

2.3. Simulation Condition 

This study used the meteorological data of Incheon 

basically provided by EnergyPlus, and the air 

conditioning system is an AHU-based conventional VAV 

system consisting of a hot water coil supplied with hot 

water from the boiler and a chilled water coil supplied 

with chilled water from the chiller. Double glazing glass 

(6mm glass + 13mm air + 6mm glass) was applied to the 

windows. The frame was assumed as an aluminum 

window frame with a width of 0.0572m and a projection 

of 0.0254m from the glass window. The composition of 

the modeling and the material properties refer to 

ASHRAE Standard 90.1. Indoor cooling set temperature 

is set at 26 ℃ and the internal heat gain conditions are 

shown in Table 1. Figure 1 shows the internal heat gain 

schedule for weekdays and HVAC system was set to 

operate from 5:00 to 19:00. 

Table 1. Internal heat gain conditions 

Type Value Fraction Radiant 

Occupancy 9.3 m2/person 0.367 

Light 9.1 W/m2 0.32 

Equipment 14.4 W/m2 0.5 

 

Figure 1. Occupancy, Lighting, Electric Equipment, and 

HVAC schedules 

2.4. Co-simulation Platform 

The purpose of this study is to minimize the total energy 

consumption which combined the electrical energy 

consumption of AHU supply fan, relief fan, two chillers, 

cooling tower, chilled water pump, and condenser water 

pump through the optimal control of AHU DAT by using 

ANN model. This study established a co-simulation 

between EnergyPlus and MATLAB through BCVTB 

platform in order to implement this. The modeling of the 
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building and system for simulation was implemented 

through EnergyPlus using the ExternalInterface and 

ExternalInterface:Schedule Objects for co-simulation. 

The ANN model was implemented by using neural 

network toolbox function included in the MATLAB 

program, and real-time data exchange of EnergyPlus and 

MATLAB through BCVTB platform is shown in Table 2. 

In addition, TimeStep was set to 5 minute intervals for the 

accuracy of co-simulation. When exchanging data, ANN 

model implemented by MATLAB stopped the artificial 

neural network learning except for HVAC operating hours 

according to HVAC system schedule and AHU DAT was 

fixed at 18℃during the weekend. In addition, AHU DAT 

was fixed at 18°C for time periods when HVAC system 

was not operating on weekdays, same as the weekends.  

Table 2. Data exchange list 

EnergyPlus → MATLAB 
MATLAB →  

EnergyPlus 

Outdoor Air Dry-bulb 

Temperature [℃] 

AHU Discharge Air 

Temperature [℃] 

Outdoor Air Relative  

Humidity [%] 

Diffuse Solar Radiation  

Rate per Area [W/m2] 

Direct Solar Radiation  

Rate per Area [W/m2] 

Cooling Coil  

Total Cooling Rate [W] 

 

2.4. Predictive ANN Model Development 

In order to develop ANN model, this study used neural 

network toolbox function embedded in MATLAB. As 

shown in Figure 2, the process for developing the total 

energy consumption prediction model according to AHU 

DAT is composed of 3 steps. The first step determines the 

input layer, hidden layer, and output layer of the initial 

model and the configuration and learning method of each 

neuron. In the second step, the initial model is optimized 

and determines the number of hidden layers and hidden 

neurons in which the prediction model can yield the most 

accurate result values. By applying CV(RMSE) 

(Coefficient of Variation of the Root Mean Squared Error), 

which is a statistical concept of viewing the overall 

accuracy of the predicted values, the number of hidden 

layers and hidden neurons when CV(RMSE) value is the 

lowest was determined as the optimal ANN model. The 

CV(RMSE) value is determined to be a reliable value 

when it is below 30% of the hourly data standard given in 

ASHRAE Guideline 14, and Equation 1 and Equation 2 

show how to calculate RMSE and CV(RMSE), 

respectively.[6] Finally, the third step secures the 

applicability through analyzing the performance of the 

optimized ANN model, and verifies the stability and 

accuracy of the prediction by comparing the results 

predicted by ANN model with EnergyPlus simulation 

results. 

 

Figure 2. ANN model development steps 

 

 𝑅𝑀𝑆𝐸 =  √
∑(𝑆 − 𝑀)𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

2

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

 (1) 

 𝐶𝑉(𝑅𝑀𝑆𝐸) =  
𝑅𝑀𝑆𝐸𝑝𝑒𝑟𝑖𝑜𝑑

𝐴𝑝𝑒𝑟𝑖𝑜𝑑

 (2) 

 𝐴𝑝𝑒𝑟𝑖𝑜𝑑 =  √
∑ 𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑝𝑒𝑟𝑖𝑜𝑑

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙

 (3) 

Where, 

𝑆 : ANN model prediction value 

𝑀 : Actual measurement value 

𝑁𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  : Number of actual measurement values 

The initial ANN model to be developed and used in 

this study consists of 6 input neurons as shown in Figure 

3, and the parameters applied are shown in Table 3. In the 

initial ANN model, the number of hidden layers and 

hidden neurons was randomly set to 1 hidden layer and 10 

hidden neurons. The learning data for the initial ANN 

model was built using EnergyPlus and data from 07:00 to 

19:00 excluding weekends from June 1 to August 31 were 

collected and used. In terms of the simulation conditions, 

AHU DAT was increased by 1°C from 12°C to 18°C to 

derive data for the input neuron along with parameters and 

total energy consumption, which is the output neuron 

result value. The output neuron is total energy 

consumption, which is a total sum of the electrical energy 
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consumption of AHU Supply Fan, Relief Fan, Two 

Chillers, Cooling Tower, Chilled Water Pump, and 

Condenser Water Pump. As for transfer functions, the 

Tangent-Sigmoid and Pure-Linear methods were used for 

the hidden and output layer neurons, respectively. In 

addition, the Levenberg-Marquardt algorithm was used 

for the learning process of ANN model. The Levenberg-

Marquardt algorithm appears as the function trainlm in 

MATLAB, which is the basic training function for 

wardnet feeds. This method tends to be less efficient for 

large networks, as more memory and computation time 

are required. In addition, trainlm works better on function 

fitting problems such as non-linear regression than pattern 

recognition problems [7]. The learning rate of the initial 

model was set to 0.3 and the momentum was set to 0.3. 

 

Figure 3. Initial ANN model 

Table 3. The variables and values of the input, hidden, and 

output neurons of the initial ANN model 

Layer Variable Value 

Input 

Outdoor Air Drybulb 

Temperature [℃] 
14 ~ 32 

Outdoor Air Relative 

Humidity [%] 
27 ~ 99 

Diffuse Solar Radiation Rate 

per Area [W/m2] 
11 ~ 450 

Direct Solar Radiation Rate 

per Area [W/m2] 
0 ~ 900 

AHU Supply Air  

Temperature [℃] 
12 ~ 18 

Cooling Coil  

Total Cooling Rate [W] 
0 ~ 510,000 

Hidden 
Number of Hidden Layer 1 

Number of Hidden Neurons 10 

Output 

Total Energy 

Consumption(Supply Fan, 

Relief Fan, Chiller, Chiller2, 

Cooling Tower, Chilled  

Water Pump, Condenser  

Water Pump) [kWh] 

4 ~ 100 

 

As described above, the number of hidden layers and 

hidden neurons are determined to optimize ANN model. 

The optimization method was performed by fixing the 

values of other variables while analyzing the performance 

of one target, and this study compared the total energy 

consumption predicted by ANN model with total energy 

consumption derived from EnergyPlus simulation and set 

each of the variables as the final target value when 

CV(RMSE) value was less than 30%. For example, during 

the simulation for finding the optimal number of hidden 

neurons, the number of hidden layers is fixed to the initial 

value in order to determine the optimal number of hidden 

neurons by evaluation, and the optimal number of hidden 

layers was determined in the same way. In this study, the 

number of hidden neurons and hidden layers were 

optimized as shown in Table 4, and the lowest CV(RMSE) 

of 24.04% was obtained when the number of hidden 

neurons was 16 and the number of hidden layers was 2. 

The optimized ANN model is shown in Figure 4. 

Table 4. The CV(RMSE) value(%) according to the number of 

hidden neurons and hidden layers 

Sort 
Number of Hidden Layer 

1 2 3 4 5 

Number 

of 

Hidden 

Neurons 

10 27.57 29.44 27.74 30.47 33.14 

11 29.86 30.09 27.21 26.34 32.70 

12 26.17 29.87 30.81 39.16 30.24 

13 32.68 32.22 26.63 31.18 34.70 

14 29.18 27.52 33.05 38.72 29.81 

15 29.80 31.18 26.41 33.16 40.30 

16 30.25 24.04 33.09 39.36 30.35 

17 26.85 28.61 30.54 39.51 38.78 

18 25.84 27.43 26.49 35.59 29.73 

19 26.82 28.80 28.70 43.28 28.28 

20 25.68 35.54 28.14 56.47 105.32 
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Figure 4. Optimized ANN model 

3 Results Analysis and Discussions 

3.1. Total energy consumption according to AHU 

DAT 

In this sub-chapter, a preliminary analysis was performed 

to investigate how AHU DAT affects the overall system 

energy performance, before applying ANN based 

optimized control of AHU DAT. During the analysis, 

AHU DATs were fixed to constant values during the 

whole simulation period. Figure 5 shows cooling energy 

consumption of HVAC system from June 1 to August 31 

according to AHU DAT, and cooling energy consumption 

ratio was high in the order of Chiller1, Chiller2, AHU 

Supply Fan, Cooling Tower, Condenser Water Pump, 

Chilled Water Pump, and Relief Fan. As AHU DAT 

increased to 17℃, cooling energy consumption gradually 

decreased and then increased again from 18℃. The 

energy consumption was highest at 46,782kWh when 

AHU DAT was 12℃, and energy consumption was lowest 

at 39,038kWh when AHU DAT was 17℃. A significant 

reduction of approximately 17% was achieved when AHU 

DAT was 17°C compared to 12°C as the energy 

consumption of AHU Supply Fan and Relief Fan 

increased while the energy consumption of other 

equipment decreased. The Chilled Water Pump showed a 

very high energy saving as AHU DAT increased, but the 

impact on the change in energy consumption was minimal 

because of the low energy consumption. In addition, the 

energy consumption of Chiller1 and Chiller2, which 

account for the highest percentage in cooling energy 

consumption, each showed energy savings of 22% and 35% 

when comparing AHU DAT 12℃ and 17℃, confirming 

that energy consumption was greatly affected by AHU 

DAT. On the other hand, the energy consumption of AHU 

Supply Fan and Relief Fan increased as AHU DAT 

increased, but the share of cooling energy consumption 

was low compared to Chiller1 and Chiller2 described 

above. Therefore, compared to AHU DAT 12℃, which 

showed the highest total cooling energy consumption, 

cooling energy consumption effect was excellent as AHU 

DAT increased up to 17℃ and significant savings were 

observed even up to 18°C. 

 

3.2. Hourly AHU discharge air temperature 

control status predicted by ANN model 

Figure 6 shows hourly AHU DAT set-point from 5:00 to 

19:00 on June 9 during the analysis period predicted by 

ANN model. The ANN model of this study combines 

energy consumption of AHU Supply Fan, Relief Fan, Two 

Chillers, Cooling Tower, Chilled Water Pump, and 

Figure 5. Total cooling energy consumption according to AHU Discharge Air Temperature change 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5014 14

5



 

Condenser Water Pump at each time-step from 5:00 to 

19:00(HVAC system operating hours) from June 1 to 

August 31, and sets the AHU DAT as the optimal AHU 

DAT when the total cooling energy consumption is the 

minimum value. As a result, AHU DAT was set to 17℃, 

in which total cooling energy consumption is the lowest 

from 5:00 to 7:00, and was set to 18℃ from 8:00 to 11:00. 

Then, it was controlled to 15°C from 12:00 to 13:00 as 

AHU DAT decreased, and was lowered by 1°C to 14°C 

from 14:00 to 16:00. From 17:00, AHU DAT was 

controlled to be gradually higher and then at 19:00, the 

last time period for operating HVAC system, it was 

controlled at 18°C. As a result of comparing energy 

consumption derived based on AHU DAT on June 9 

predicted by the optimal ANN model with fixed control 

case, it showed energy savings of 21% compared to the 

highest energy consumption at 18°C on the corresponding 

day and energy savings of 2% compared to the lowest 

energy consumption at 16°C. Figure 7 shows the 

cumulative hours of each AHU DAT control. According 

to the graph, 18℃, which shows the lowest total cooling 

energy consumption after AHU DAT 17℃, accounted for 

864 hours out of total 990 hours, followed by 55 hours at 

17℃, 22 hours at 16℃, 19 hours at 14℃, 15 hours at 12℃, 

13 hours at 15℃, and 2 hours at 13℃. 

 

Figure 6. Hourly AHU Discharge Air Temperature control 

status (June 9) 

 

Figure 7. The cumulative hours for each AHU DAT control 

3.3. Chiller energy consumption 

The chiller accounts for the largest portion of total cooling 

energy consumption. Therefore, reducing energy 

consumption of the chiller is a key point to reduce the 

overall cooling energy. Figure 8 shows the total energy 

consumption of Chiller1 and Chiller2 during HVAC 

operating hours from 5:00 to 19:00 from June 1 to August 

31 when AHU DAT is fixed from 12°C to 18°C and when 

the optimal AHU DAT is controlled at each time-step 

through the optimal ANN model. In the case of Chiller1, 

energy consumption pattern showed a steady decrease as 

AHU DAT increased, and Chiller2 showed a steady 

decrease until AHU DAT increased up to 17℃, and then 

increased again from 18℃. Therefore, among the fixed 

control cases, total energy consumption of Chiller1 and 

Chiller2 was the lowest at 25,828kWh in the case of AHU 

DAT 18℃, and Chiller2 was the lowest at 6,803kWh at 

17℃. When AHU DAT was controlled through the 

optimal ANN model, the energy savings rate was 30% 

higher than that of AHU DAT 12℃. Compared to AHU 

DAT 18℃, Chiller1 showed a low energy savings of 0.2%, 

while Chiller2 showed an energy savings of 8%, resulting 

in a total chiller energy reduction rate of 2%. 

 

Figure 8. Chiller energy consumption comparison 

3.4. Total cooling energy saving by ANN 

Figure 9 shows total cooling energy consumption of AHU 

Supply Fan, Relief Fan, Two Chillers, Cooling Tower, 

Chilled Water Pump, and Condenser Water Pump in each 

simulated case. The total cooling energy consumption was 

highest at 46,782kWh when AHU DAT was 12℃ because 

energy consumption of other devices was higher than 

other cases except for AHU Supply Fan and Relief Fan. 

The difference in total energy consumption between AHU 

DAT 17℃ and 18℃ was approximately 1.5% lower at 

17℃. At 18℃, energy consumption was 39,618kWh 

higher than that of 17℃ due to increased energy 

consumption of Chiller2 and Condenser Water Pump. 

However, at 17℃, energy consumption was 39,038 kWh 

due to reduced energy consumption of Chiller2 and 

Condenser Water Pump. The real-time control of AHU 

DAT through ANN model showed a significant cooling 
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energy consumption reduction. Table 5 shows total energy 

consumption reduction rate of the optimal ANN model 

when compared to the fixed AHU DATs. As shown in 

Table 5, cooling energy consumption can be reduced by 

up to 18% and at least 2%. Likewise, it is possible to 

implement real-time optimal control of AHU DAT based 

on ANN model by minimizing the sum of energy 

consumption of AHU Supply Fan, Relief Fan, Two 

Chillers, Cooling Tower, Chilled Water Pump, and 

Condenser Water Pump in real-time through the learning 

process of ANN model. 

 

Table 5. Difference in total cooling energy consumption 

between the optimal ANN model and the fixed AHU DAT 

control cases 

Case 
Difference between ANN control and fixed AHU 

DAT [%] 

12℃ 18.2 

13℃ 14.3 

14℃ 10.1 

15℃ 6.5 

16℃ 3.7 

17℃ 2.0 

18℃ 3.4 

 

4 Conclusion 

This study developed an ANN model that can control the 

optimal AHU DAT in real-time by using the neural 

network toolbox function embedded in MATLAB and 

verified its accuracy through CV(RMSE) analysis. In 

order to implement ANN model, this study used 

EnergyPlus and BCVTB platform to implement 

simulation connected with MATLAB, which can leverage 

the neural network toolbox functions described previously. 

From June 1 to August 31, data analysis was performed 

from 5:00 to 19:00 according to HVAC system schedule 

and the conclusions are as follows. 

Before developing ANN model, this study analyzed 

total cooling energy consumption from June 1 to August 

31 according to AHU DAT. The lower the AHU DAT, the 

lower the energy consumption, but showed an increasing 

pattern from 18℃. The chiller consumed the most energy 

due to the characteristics of HVAC system during summer. 

In terms of equipment other than the fan, energy 

consumption decreased as AHU DAT increased, while 

AHU Supply Fan and Relief Fan showed an increasing 

pattern. 

Hourly AHU DAT controlled by ANN model from 

5:00 to 19:00 during the summer was analyzed. As a result 

of investigating hourly AHU DAT predicted by ANN 

model, 18℃ accounted for the most time at 864 hours out 

of total cooling time of 990 hours, followed by 55 hours 

at 17℃, 22 hours at 16℃, 19 hours at 14℃, 15 hours at 

12℃, 13 hours at 15℃, and 2 hours at 13℃. 

Compared to the fixed control of AHU DAT, the 

difference in energy consumption between Chiller1 and 

Chiller2 when AHU DAT is controlled in real-time by 

applying the optimal ANN model showed 30.4% lower 

energy consumption than when AHU DAT was lowest at 

12℃, 26.3% lower than 13°C, 21.5% lower than 14°C, 

16.6% lower than 15°C, 11.7% lower than 16°C, 6.2% 

lower than 17°C, and 2.3% lower than 18°C when AHU 

DAT was the highest. 

Compared to the fixed control of AHU DAT, total 

energy consumption when AHU DAT is controlled by the 

optimal ANN model was 18.2% lower than AHU DAT 

12℃, 14.3% lower than 13℃, 10.1% lower than 14℃, 

6.5% lower than 15℃, 3.7% lower than 16℃, 2.0% lower 

than 17℃, and 3.4% lower than 18℃. Therefore, it was 

possible to reduce cooling energy consumption 

Figure 9. Total cooling energy consumption 
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significantly when AHU DAT was controlled in real-time 

using ANN model. 

As a result of using ANN model to optimize AHU 

DAT control in an office building, this study confirmed 

that there is certainly the potential to save a considerable 

amount of cooling energy compared to the simply fixed 

control method. Therefore, future studies will aim at 

analyzing higher cooling energy saving effects through 

simultaneous optimal control of other system control 

variables such as chilled water temperature, condenser 

water temperature, and condenser water flow rate, as well 

as AHU DAT. 

This work was supported by the Human Resources Development 

of the Korea Institute of Energy Technology Evaluation and 

Planning (KETEP) grant funded by the Korea Government 

Ministry of Trade, Industry & Energy (No. 20184030201900) 
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