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Abstract. One of the prevalent models to account for thermal comfort in HVAC design is the Predicted 
Mean Vote (PMV). However, the model is based on parameters difficult to estimate in real applications and 
it focuses on mean votes of large groups of people. Personal Comfort Models (PCM) is a data-driven approach 
to model thermal comfort at an individual level. It takes advantage of concepts such as machine learning and 
Internet of Things (IoT), combining feedback from occupants and local thermal environment measurements. 
The framework presented in this paper evaluates the performance of PCM and PMV regarding the prediction 
of personal thermal preferences. Air temperature and relative humidity measurements were combined with 
thermal preference votes obtained from a field study. This data was used to train three machine learning 
methods focused on PCM: Artificial Neural Network (ANN), Naive-Bayes (NB) and Fuzzy Logic (FL); 
comparing them with a PMV-based algorithm. The results showed that all methods had a better overall 
performance than guessing randomly the thermal preferences votes. In addition, there was not a difference 
between the performance of the PCM and PMV-based algorithms. Finally, the PMV-based method predicted 
well thermal preferences of individuals, having a 70% probability of correct guessing. 

1 Introduction  
The prevalent approach for design of thermal comfort in 
HVAC systems worldwide is based on the Predicted 
Mean Vote (PMV) model [1, 2]. This model predicts the 
overall thermal sensation of occupants, based on two 
personal parameters: metabolic rate, clothing level; and 
four environmental variables: relative humidity, mean 
radiant temperature, air temperature and air velocity. 
However, the method requires data that is difficult to 
estimate in real applications, such as: metabolic activity 
rate and clothing level. In addition, the PMV is not able to 
re-learn from new data since the input parameters it uses 
are fixed in the model. Lastly, the model had a poor 
predictability performance when applied to individuals in 
some field studies [3-5]. In the last years, a new approach 
to model thermal comfort has been suggested, taking 
advantage of modern data modelling techniques, named 
Personal Comfort Models (PCM). They take individuals 
as units of analysis, where measured data is combined 
with feedback from occupants to create models that 
predict individual responses [6]. PCM are based on data 
that is easy-to-obtain and cost-effective, using machine 
learning algorithms for data processing. Different 
algorithms and sources of information can be used, adding 
flexibility to the data modelling.  
     The framework described in this report evaluates the 
performance of three different machine learning 
techniques and compares them with an algorithm 
grounded on the PMV model. Data obtained from a 
participatory sensing assessment in two university offices 
was used to compare all the methods in terms of the 
prediction of thermal preference votes. This project 
contributes with the following: (1) A field evaluation of a 
thermal comfort participatory sensing approach, (2) A 
performance evaluation of four methods: Artificial Neural 
Networks (ANN), Naive-Bayes (NB), Fuzzy Logic (FL) 

and Predicted Mean Vote (PMV) with regards to thermal 
preference predictability. 

2 Related work  
Different approaches to model thermal comfort at a 
personal level have been made in recent years. Many of 
the initial attempts originated from multidisciplinary 
efforts rather than thermal comfort research alone. A 
number of those studies used the PMV index as the metric 
to integrate thermal comfort in learning algorithms [7-10]. 
All of them employed a multi-valued logic called fuzzy 
logic to characterize different thermal comfort categories 
given by the PMV. This approach has the limitations of 
the PMV model: the difficulty to account for personal 
parameters and is not focused on individuals. As a result, 
there is a growing interest to develop methods that employ 
data easy and cheap to measure, taking advantage of state-
of-the-art mathematical modelling methods. Different 
machine learning techniques have been tried depending 
on the data availability and the focus of the method. 
Bayesian networks was the tool implemented by [11] to 
model thermal comfort preferences. This framework 
achieved a 70% accuracy when predicting thermal 
preference votes from occupants in a field study. The 
same learning technique was used by [3] to determine 
comfort temperatures with the ASHRAE RP-884 data 
base, a set of data used to develop the Adaptive Thermal 
Comfort Model [12]. The approach showed an improved 
performance compared to conventional thermal comfort 
models such as PMV and the Adaptive model. Artificial 
Neural Networks were implemented by [13] to model 
thermal sensation. This approach showed 80% accuracy 
when predicting occupants’ votes in a field evaluation. 
     Despite the above, there has not been many 
applications of PCM in field studies for long periods. 
Fuzzy logic controllers were employed by [14, 15] to 
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model thermal preferences from occupants in offices. 
That information was used together with ventilation 
airflow measurements to control a HVAC system for a 
period of 13 and 14 weeks. The results showed 12-39% 
airflow reduction and an improvement of thermal comfort 
when using the methods based on fuzzy logic. However, 
the performance of a participatory sensing methodology 
relies substantially on the degree of participation of the 
occupants. Keeping the consistency of occupants' 
participation is a challenging task. Different types of 
survey interfaces were tested by [16], proposing a plain 
slider scale that improves participation and consistency 
when carrying out a participatory sensing approach.  
     To avoid relying on occupants' feedback, several 
investigations were made to find correlations between 
human behaviour and thermal comfort. A Personal 
Comfort System (PCS) was applied by [6], consisting of 
a device that allowed occupants to regulate the 
temperature in their local working area, using a custom-
built seat. Occupants' behaviour when regulating their 
local thermal environment was combined with surveyed 
information and thermal environment measurements. 
This information was used as input to six different PCM-
based machine learning algorithms to predict thermal 
preference votes. The results showed that the PCM had an 
average prediction accuracy of 73%, which was better 
than the performance of conventional thermal comfort 
models, which only yielded 53% accuracy. 
     The implementation of PCM in real HVAC 
applications is still a developing task. More efforts on its 
standardization and use in practice are needed. How to 
obtain feedback from occupants on a continuous basis and 
how to integrate trustful learning algorithms in HVAC 
control loops are just a couple of the challenges that the 
research efforts are facing. 

3 Methodology  
A field assessment based on a participatory sensing 
approach was carried out in two offices at the Technical 
University of Denmark. Thermal preference votes from 
six participants were obtained continuously during a 
period of thirteen days. Occupants were provided with a 
web-based survey that could be accessed either by smart-
phones or personal computers. During that period, the 
thermal environment in the room was modified in a non-
systematic manner by opening windows, turning on/off 
electric heaters and controlling water flows inside 
radiators. Air temperature Ta and relative humidity RH 
were recorded periodically every 5 minutes at the local 
workplace of each occupant by using HOBO-loggers as 
measuring instruments [17]. This procedure was used to 
obtain a wide range of thermal preference votes as a result 
of having different levels of thermal environment inside 
the offices. 
     The aim of the evaluation was to characterize the 
performance of four algorithms when predicting thermal 
preference categories or classes, generated from the 
participatory sensing votes. The numerical value of a vote 
is called Thermal Preference Value (TPV), which can take 
values between 0 and 18. Three different classes were 

generated from the TPV as follows: from 0 to 7 
corresponded to "Colder", from 8 to 10 were considered 
as "No change" and 11 to 18 were considered as 
"Warmer". A thermal preference category with its 
corresponding Ta and RH measurement formed a data 
point. The total number of data points gathered along the 
evaluation period was divided into data used for training 
and testing the learning algorithms. How good the 
performance of an algorithm was depended on how well 
it predicted thermal preference classes based on unseen 
Ta and RH measurements or testing data. An algorithm 
that has a good performance of predicting thermal 
preferences is able to provide an accurate description of 
occupants' individual comfort zones. Thus, HVAC 
control systems can benefit from the inclusion of such 
algorithms to provide an adequate indoor environment, 
specific for different requirements and working 
conditions.   

 3.1. Participatory sensing  

Occupants were asked to answer a simple question: How 
would you prefer the temperature? The answer was given 
in a snapping scale, where it was possible to select: much 
colder, no change, much warmer or any value in between, 
as shown in Fig.1 (left). After each vote was made, a 
graphical feedback was given to every participant, 
illustrated in Fig.1 (right). This plot showed the total 
number of daily votes per category in the room to 
encourage occupants' continued participation. All six 
participants were requested to vote as many times as they 
could. They were provided with daily reminders during 
the evaluation period. The only restriction for the 
participants was not to vote with a minimum time-span of 
15 minutes between votes. This condition was to avoid 
having persistent occupants expecting to get a rapid 
change of their current thermal environment. However, all 
votes were taken into account in the assessment, no matter 
the period of time between them. The design of the 
participatory sensing survey aimed to maintain 
participation along the evaluation period and improve 
consistency, according to the findings of [16].  

Fig. 1. Survey implemented in the field experiment.  

3.2. Algorithms  

There is a large number of machine learning algorithms 
available to be applied within PCM frameworks. In this 
particular article, the chosen methods provided a rather 
intuitive application and did not consider a large number 
of assumptions with respect to the data used to train them. 
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This allowed implementing the algorithms without 
adjusting many parameters, thus, it was straightforward to 
determine their optimal performance. A brief description 
of the methods and considerations taken into account are 
presented as follows: 

3.2.1 Artificial Neural Networks (ANN) 

ANN is a method used to solve non-linear problems by 
using a network composed of individual elements or so-
called neurons. In each neuron linear, logarithmic, 
sinusoidal or other types of mathematical transformations 
or transfer functions are used. The final result using this 
technique is a network where the weight of each neuron 
has been optimized to minimize the error between the 
output of the network and the data used for training [18]. 
ANN was implemented by using the Matlab Artificial 
Network Toolbox and was composed of three types of 
layers: input, hidden and output. Three different types of 
transfer functions were tested: Log-Sigmoid (logsig), 
Hyperbolic-Tangent Sigmoid (tansig) and Linear 
transformation (purelin). An iterative process was carried 
out through a method called Levenberg-Marquardt 
backpropagation (LM-BP). This method adjusts the 
weights of each neuron to diminish the error between the 
ANN predictions and the testing data. The process 
finished either when a maximum of 100 iterations or when 
a Mean Square Error (MSE) of 10-7 was reached. 
 
3.2.2 Naive-Bayes (NB) 
  
The NB method uses the basic principles of probability, 
based on the application of Bayes theorem. This states that 
the probability of a given event is calculated from 
previous knowledge about conditions related to an event. 
In particular, the term "naive" comes from the assumption 
that different factors that affect the event are independent 
of each other, also named conditional independence. In 
this method, it is also assumed that all thermal preference 
categories or classes have the same distribution. To 
implement this method, first a Probability Density 
Function (PDF) was selected and applied to the training 
data, calculating the mean and standard deviation of each 
parameter. These two statistical parameters were used to 
calculate the probability of a certain class of unseen data, 
used for testing [18]. The Matlab Machine Learning 
Toolbox was applied to develop the NB algorithm.   
     In both ANN and NB algorithms the overall training 
process was as follows: (1) The entire data set was read 
by the algorithm, corresponding to RH and Ta 
measurements  and participants’ thermal preferences; (2) 
The data set was standardized based on its mean and 
standard deviation to eliminate the influence of different 
orders of magnitude; (3) The data was randomly ordered 
to eliminate the influence of its arrangement; (4) The 
entire data set was divided between training and testing 
data; (5) In NB the standard deviation and mean were 
calculated as part of the training process, whereas for 
ANN the weights of all neurons were calculated; (6) The 
outputs of the algorithms were obtained and compared 
with the training data.     

 
3.2.3 Fuzzy logic (FL)  
 
FL is a multi-valued logic grounded on the statement that 
the truth of an affirmation is a matter of degree, first 
introduced by [19]. Unlike in classical logic where a 
variable can be either 1 or 0, in FL a variable can also be 
any value in between those numbers. The data in FL is 
classified as fuzzy sets, which represent linguistic 
variables (e.g., hot, cold, low or high). How much a data 
point belongs to a fuzzy set is given by a membership 
degree. Unlike in NB and ANN, the FL was only provided 
with Ta measurements. RH was not included since the 
framework applied to develop the FL algorithm was based 
on the contribution from [14], who developed an approach 
grounded on the Wang-Mendel method to create fuzzy 
logic descriptive models [20]. The FL algorithm in this 
assessment implemented in Matlab. Three fuzzy sets were 
assumed, representing the three thermal preference 
classes: "Warmer", "Colder" and "No change". A Ta value 
from the training data was considered within a fuzzy set 
depending on how much its corresponding TPV belonged 
to that thermal preference category. The three fuzzy sets 
considered TPV values from 0 to 7 to be "Colder", 8 to 10 
for "No change" and 11 to 18 for "Warmer". This allowed 
having a descriptive model of thermal preferences classes 
based on measured Ta. When testing the algorithm, 
unseen Ta values were classified into the different 
categories depending on their membership degrees. Only 
the ratio between training and testing data was varied in a 
sensitivity analysis, evaluating the outcome in terms of 
classification performance. 
 
3.2.4 Predicted Mean Vote (PMV)  
 
The PMV-based method considered that a PMV index 
below -0.5 corresponds to a preference towards 
"Warmer", above 0.5 is associated with a preference to the 
class "Colder" and values between -0.5 and 0.5 indicate a 
preference of "No change". The implementation of the 
PMV model was performed by applying in Matlab the 
algorithm defined in ASHRAE 55 [21]. Three input 
parameters to determine the PMV index were varied in the 
method to establish the best performing configuration in 
terms of classification performance. The clothing level 
was varied between 0.5-1.2 [clo] accounting for typical 
garments for summer and winter respectively; the 
metabolic activity rate between 1-2.1 [met] was tested, 
corresponding to a range of physical activities that can be 
performed in offices, from being seated, relaxed to 
walking; and the mean air velocity was varied between 0-
0.12 [m/s] representing the maximum range allowed in 
landscaped offices, according to ISO 7730 [22]. 

3.3 Performance evaluation  

Identification of the category or class a new data point 
belongs corresponds to a classification problem. The 
algorithms tested in this assessment were evaluated by 
their capacity to classify thermal preference categories 
based on thermal environment measurements. How good 
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a classification algorithm (or classifier) performed 
depended on the number of correct and incorrect guesses. 
When a data point was correctly allocated in a certain 
category "A", it was called true positive. Similarly, the 
data that was correctly not allocated in that category was 
called true negative. On the other hand, the data that was 
incorrectly classified as "A" was called false positive. 
Finally, false negatives were data that was supposed to be 
"A" but was classified in another category. The True 
Positive Rate (TPR), also named hit rate or recall, is 
defined as the ratio between the number of true positives 
and the total number of positives. The False Positive Rate 
(FPR) or false alarm rate, corresponds to the ratio between 
the number of false positives and the total number of 
negatives. TPR states the proportion of positives correctly 
classified, whereas the FPR gives the probability of 
wrongly allocating a category as negative. From the 
relation between both rates it was possible to characterize 
graphically the performance of a classifier by using the 
Receiver Operating Characteristics (ROC) [23]. The ROC 
is a two-dimensional plot, where FPR is placed on the x-
axis and the TPR on the y-axis, as shown in Fig.2. This 
graph represents the trade-off between benefits (true 
positives) and costs (false positives). A well performing 
classifier generates larger TPR than FPR, contrary to what 
happens with a bad classifier. When both ratios are equal, 
it represents the strategy of randomly guessing a class 
(dashed line in Fig.2). 
 

 

Fig. 2. ROC curve example.  
 
     The analysis of the classification performance in the 
framework presented in this report is based on the Area 
Under the Curve (AUC), which is a scalar number that 
simply represents the area under the ROC curve. The AUC 
is equivalent to the probability that a classifier will rank a 
randomly selected positive event higher than a negative 
selected one, i.e., the probability that a class will be 
correctly classified as such [23]. It can take values 
between 0 and 1, corresponding to the minimum and 
maximum a classifier can perform. For a random guessing 
classifier the AUC will be 0.5. Accordingly, values above 
0.5 are generated by well performing classifiers and 
below 0.5 for poorly performing ones. As the aim of the 
algorithms evaluated in this report was to guess three 
different thermal preference categories, a multi-class 
AUC was taken into account. This approach calculates the 
average AUC of all classes, considering a method called 
"each class against the rest", represented in Eq. 1 [24]. 

This method assumes that all classes have uniform 
distribution, calculating the probability of classifying 
correctly a class against the others, which is then averaged 
with the probability from the rest of the classes.  

                   𝐴𝐴𝐴𝐴𝐶𝐶𝑚𝑚𝑚𝑚 =
∑ 𝐴𝐴𝐴𝐴𝐴𝐴(𝑗𝑗,𝑟𝑟𝑟𝑟𝑟𝑟𝑡𝑡𝑗𝑗)𝑐𝑐
𝑗𝑗=1

𝑚𝑚
  (1) 

     Where AUCmc is the multi-class area under the curve, 
c is the total number of classes, j is a class and restj 
represents all the classes different from class j. 

4 Results and discussion  
During the survey period, occupants were not forced to 
participate nor to provide a specific number of votes to 
avoid influencing their everyday activities. Thereupon, 
the number of votes per participant along the surveyed 
period varied considerably (Fig. 3). In spite of the daily 
reminders and the simplicity of the survey, a decreasing 
trend in the number of daily votes provided was observed. 
 

Fig. 3. Number of daily thermal preference votes provided by 
each occupant along the evaluation period.  
 
     Table 1 illustrates the statistical characteristics of the 
TPV resulting from the assessment. The table shows a lack 
of variability in the votes, considering that occupants 
could vote within the TPV range between 0 and 18. A 
narrower range of TPV was obtained because of the 
reduced variation in the air temperatures (Tables 1 and 2). 
The percentiles show that the votes were mainly biased 
towards low TPV associated to the category "Colder". 
This result suggests that the occupants were in general 
more affected by warmer temperatures in the room than 
the opposite. Thus, the data provided to the algorithms 
was not equally distributed among the three classes 
considered, a problem called imbalanced data. In addition, 
the percentiles reflect that the classes were not uniformly 
distributed, i.e., the probability of predicting a vote within 
a class was not constant. As described by [24], uniform 
distribution is a basic assumption to evaluate the 
classification performance of an algorithm by using the 
multi-class AUC described in Eq.1. In practice, it is 
difficult to have approximately the same number of TPV 
values in each class per occupant. Occupants would need 
to be exposed to different thermal environment conditions 
during equal periods of time when obtaining the training 
data. It is therefore a challenging task to characterize 
accurately the classification performance of a learning 
algorithm that aims to predict occupants' thermal 
preferences. 
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Table 1. Statistical parameters of the TPV per occupant obtained 
in the participatory sensing assessment. O: Occupant, STD: 
Standard deviation. 

O Percentiles 
5/10/90/95 STD Mean Median Number 

of votes 
1 3.0/4.4/11.0/11.0 2.5 7.8 8.0 55 

2 8.0/9.0/12.0/12.0 1.9 9.7 9.0 80 

3 5.0/7.0/10.0/10.0 1.7 8.6 9.0 82 

4 7.2/9.0/12.0/13.0 2.0 9.8 9.0 84 

5 4.0/5.0/13.0/14.0 3.1 9.4 9.0 110 

6 4.7/6.0/14.0/14.3 3.1 10.3 11.0 55 
 

     The percentiles and standard deviations in Table 1 
show that occupants 1, 5 and 6 provided votes with higher 
variability. The feedback from those three occupants were 
chosen as input data to test the learning algorithms and 
compare them with the PMV method. The reason was to 
ensure that all the thermal preference categories had 
sufficient data points, minimizing the effects of 
imbalanced data. 
     Fig. 4 shows the AUC values yielded per algorithm, 
considering the data of each occupant separately. All 
methods had a better performance than random guessing 
(AUC=0.5). Therefore, all classifiers will probably predict 
more positive instances than negative ones. This shows a 
good performance considering that only Ta and RH 
measurements were provided to the methods. 
 

 
Fig. 4. Classification performance represented by the AUC 
value for all four algorithms studied, taking into account the data 
obtained from occupants 1 (O1), 5(O5) and 6(O6). RG=Random 
Guessing line. 
 
     The classification performance among the occupants 
was mainly affected by how many votes per occupant 
were provided, the distribution of the data points among 
the classes and the consistency of the votes from the 
occupants. Higher AUC values could be achieved if any 
of those factors were improved. The inclusion of data 
from additional parameters, such as radiant temperature 
and air velocity, could also improve the classification 
performance of the algorithms tested. 
     Overall, the methods with the highest performance 
were NB and PMV, accounting for a probability of 
correctly predict a class of 73% and 70%, respectively. 
The NB method assumed that Ta and RH were 
independent from each other. It calculated the mean and 
standard deviation of the training data, adjusting a PDF. 
Hence, it did not calculate individual factors related to 

each data point. That was the reason why it performed 
better than the other algorithms. By calculating variables 
that comprise a whole data set, it simplifies the learning 
process. 
     Fig. 5 shows the performance of all methods with 
regards to each thermal preference category. Classifying 
incorrectly a category could yield to serious operational 
problems when applied in reality. Thermal comfort and 
health could be compromised when a HVAC control 
system regulates the thermal environment wrongly. For 
instance, controlling an indoor environment based on a 
preference towards colder temperatures instead of 
warmer, could have serious implications in occupants' 
well being. Fig. 5 shows that all methods except FL had a 
better performance when predicting the "No change" 
category than any other class. This is owed to the 
unbalanced data among the classes, showed in Table 1. 
 

 
Fig. 5. Classification performance represented by the AUC 
value for all four classifier studied, taking into account the three 
thermal preference classes predicted. RG=Random Guessing 
line. 
 
     Some machine learning methods were more sensitive 
to imbalanced data than others were. They tended to favor 
the "no change" class for having the largest proportion of 
data, translated in a larger amount of true positives. In that 
context, the NB method exhibited less difference in the 
prediction of different classes. This method reduced the 
influence of biased data by assuming that all classes had 
the same PDF and by calculating parameters that enclose 
a whole data set. To avoid the problem of imbalanced 
data, it would be needed to expose people under 
uncomfortably warm/cold environments for a period 
equal to the period they feel comfortable. Since the last is 
unlikely to be applicable in reality, it is desired that the 
algorithm employed to predict thermal preferences 
overcomes the problem of not uniformly distributed 
classes. For that, it is proposed to make a sensitivity 
analysis of a classifier changing the distribution of the 
training data per class [25]. 
     A correlation between the amount of training data 
needed by the learning algorithms and their corresponding 
classification performance is illustrated in Fig.6. This 
information allows the identification of how much the 
number of votes can be decreased with regards to the 
variation of the performance of a method. The data of all 
the occupants was combined and a linear correlation was 
applied for comparison purposes, even though the actual 
correlation may not be linear. A single data point 
corresponded to a thermal preference category with its 
corresponding measurement of Ta and RH (only Ta for 
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the FL method). Fig.6 illustrates that all the methods had 
a performance better than random guessing, even when 
the amount of training data was reduced to only 10 data 
points. The NB was not only the best performing method, 
but also required less data to generate a higher AUC 
compared to the other algorithms. The performance of NB 
and ANN increased with an increase of the amount of 
training data, whereas the FL method diminished its 
performance. Unlike the two other learning methods, FL 
does not rely on an iterative process to diminish the error 
during the training process of the algorithm. When 
training the FL method, the first part of the training data 
read by the algorithm was used to construct the fuzzy sets. 
The rest of the training data did not contribute to create 
better fuzzy sets, as they were already created by the first 
data points read. Thus, providing more data point to the 
FL algorithm did not improve its performance.     
 

 
Fig. 6. Classification performance represented by the AUC 
value as a function of the amount of data required for training on 
each of the three learning algorithms analysed. 

5 Limitations  

There are a number of limitations with regards to the 
framework proposed in this assessment. First, the 
evaluation period considered in the field assessment was 
limited. A longer period would allow having more input 
data for the learning algorithms, accounting for variations 
that the thermal preferences may have with different 
weather conditions. As a result, the classification 
performance of the PCM-based algorithms could be 
analyzed with more training data. Second, miss-

classification costs, i.e., the cost of not classifying 
correctly a category, were not taken into account. In 
reality, it does not have the same implications to classify 
a "Warmer" category as "No change" than classifying it 
as "Colder". This should be taken into account when 
characterizing the performance of PCM, especially when 
implemented in real applications. Third, it was considered 
that TPV was mainly influenced by air temperature and 
relative humidity. It would be needed to determine the 
required number of votes per occupant to minimize the 
influence of other factors that may influence the thermal 
preference votes. This will help to define the minimum 
number of votes per occupant needed to ensure a desired 
classification performance. 

6 Conclusions  
Personal Comfort Models (PCM) allow to focus on the 
thermal comfort needs of individuals based on local 
indoor environment measurements and feedback provided 
by them. Three PCM-based methods were tested in this 
assessment, based on thermal preference votes obtained 
from a field study survey. A method based on the PMV 
model was also calculated and compared with PCM. From 
the results obtained in this assessment, the conclusions 
were:  
• When predicting personal thermal preferences, all the 

four algorithms tested (ANN, NB, FL and PMV) 
showed a better overall performance than guessing 
randomly, even though only air temperature and 
relative humidity were provided as input data. 

• The difference between the performance of the PCM-
based methods and the PMV-based method was very 
modest. 

• The PMV method was capable of predicting thermal 
comfort at an individual level, with a probability of 
guessing correctly 70% of personal thermal 
preference votes. 

• The NB method was not only the best performing 
method, predicting 73% of the thermal preferences, 
but also performed better at predicting each singular 
thermal preference category, requiring less training 
data than the other methods. 

Table 2. Parameters that yielded the highest AUC on each algorithm, considering the data from all the three participants.  
LM-BP: Levenberg-Marquardt backpropagation. 

Algorithm Parameter Occupant 1 Occupant 5 Occupant 6 
ANN Ratio training/total data 0.4 0.4 0.3 
 Number of hidden layers 3 6 3 
 Training function LM-BP LM-BP LM-BP 
 1st transfer function purelin purelin purelin 
 2nd transfer function purelin purelin purelin 
 Number of iterations (epochs) 3 3 3 
NB Ratio training/total data 0.5 0.9 0.9 
 PDF normal normal normal 
FL Ratio training/total data 0.7 0.2 0.2 
PMV Clothing level 1.1 1.1 1.2 
 Metabolic rate 1 1 1 
 Air velocity 0.10 0.10 0.12 
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     The implementation of PCM in field studies is still a 
developing field. It has the potential to contribute 
substantially to improve the operation of modern HVAC 
and BMS systems. Future research efforts will be focused 
on the implementation of PCM in HVAC control loops, 
focusing on easy-to-obtain data. A participatory sensing 
assessment for a longer evaluation period will also be part 
of the future work in this direction. 
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