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Abstract. Modern buildings usually have a practically air-tight envelope. Therefore, mechanical ventilation 

is very often necessary. A crucial part of the system is the filter which allows to create an atmosphere which 

is free of dust, aerosols, and pollen. As organic material accumulates on the filter surface, the risk of micro-

organism growth rises. This may yield health issues especially for the occupants of buildings in humid regions. 

For this purpose, a test filter with electrodes has been designed which allowed to measure its electro-magnetic 

properties, such as resistance, capacitance, and impedance as an indicator for the micro-organism growth risk. 

After some preliminary tests, electrodes of stainless steel and the electrical capacitance have been selected 

due to their best durability and signal-to-noise-ratio. The test filter has been implemented in the HVAC system 

of the institute in order to aggregate data for different abnormal and normal operation data. A machine learning 

algorithm has been trained successfully to detect anomalies of the filter behaviour and therefore provided 

more insight than pressure drop measurement alone. Finally, the change intervals of the filter could be adapted 

to the real degree of pollution without the requirement for visual observation in order to provide best air 

conditions. 

 

1 Introduction 

The Paris Agreement forces the signing states to reduce 

their carbon dioxide emissions [1]. For this purpose, the 

consumption of fossil fuels has to be reduced dramatically 

that can be achieved by increasing both the renewable 

share of the energy supply and the energy efficiency [2]. 

One measure is to improve the insulation of building that 

leads, however, to practically air-tight building envelopes. 

Therefore, mechanical ventilation systems are required in 

order to assure a healthy ventilation rate. An important 

task of a mechanical ventilation system is to prevent 

pollutants from outside entering the building, for which 

purpose filters are employed. These filters are prone to 

fouling and, if the conditions are humid enough, to micro-

organism growth, yielding severe health issues. Thus, 

filters are usually changed on a regular basis. This 

procedure is, however, most likely too often or too 

seldom.  

 

Methods of machine learning might help solving this 

optimisation problem. They are widely used for internet-

based services such as search engines, news feeds, image 

classification, etc. They became also quite popular in 

conjunction with the so-called internet of things, where 

devices are connected over internet in order to provide 

some benefit to the user [3]. First academic studies 

investigate the utilisation of machine learning for HVAC 

systems [4–11]. 

In particular, algorithms for anomaly detection gained 

recently some interest. There are some publications with 

the intention to detect malfunctions in HVAC systems, 

such as Ref. [12-17]. 

 

Based on this earlier work, the objective of this 

contribution is to provide a set-up and machine learning 

algorithm to assess the micro-organism growth risk of 

filters. The paper is organised as follows: Section 2 

presents the experimental set-up with the HVAC and 

measurement systems as well as the measurement series. 

Moreover, the machine learning algorithm with the model 

and the workflow is presented. Section 3 provides the 

results and discussion. 

2 Experimental investigation 

2.1 HVAC system 

The experimental investigation is carried out in one of two 

parallel operable HVAC systems of the room air-flow 

laboratory of the institute (see Fig. 1 for an 
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illustration) [18]. It consists of the following major 

components: air intake (A), flap (B), intake filter (C), 

recirculation air flap (D), cooler (E), heater (F), supply fan 

(G), humidification (H), silencer (I), air exhaust (J), flow-

rate control (K), fire protection flap (L), air emission (M) 

into the room air-flow laboratory and the air extraction 

(N) from there. The test section is placed just before the 

treated air enters the distribution channel (see magnified 

part of Fig. 1). 

2.2 Measurement system 

The subject under consideration is the filter highlighted in 

Figure 1 that is prepared with electrodes made of stainless 

steel oriented perpendicularly to the flow direction. The 

electrodes are connected to a function generator providing 

sinusoidal voltage signals. As a measure for the humidity 

of the filter, the electrical capacitance exhibits the best 

signal-to-noise ratio compared to resistance, inductance, 

and impedance, as obtained from preliminary tests.  

 

The interrelation between electrical capacitance and the 

humidity of the filter via the permittivity 𝜀 is provided 

by [19]: 

𝐶 =
𝜋𝜀𝐿

arcosh (
𝑆
𝐷

)
. (1) 

Herein, 𝐿, 𝐷, and 𝑆 are the length, diameter and distances 

of the electrodes, respectively. In this study, the electrical 

capacitance is measured and depends upon the humidity 

of the filter via the permittivity 𝜀. Moreover, the pressure 

difference between the ambient and the inlet of the filter 

Δ𝑝fa, the pressure drop over the filter  Δ𝑝f, the ambient 

pressure 𝑝amb, the temperature 𝑇, relative humidity 𝜑, and 

velocity of air 𝑣 at the inlet of the filter are measured (see 

Figure 1 for details and Table 1 for the measurement 

devices and their uncertainties). 

Table 1. Measurement devices and their uncertainties 

Quantity Device Uncertainty 

Δ𝑝fa Ashcroft, 0…100 Pa 0,25 Pa 

Δ𝑝f Ashcroft, 0…500 Pa 1,25 Pa 

𝑝amb Vaisala PMB 100 0.3 hPa 

𝑇 Vaisala HMT 100 0,3 K 

𝜑 Vaisala HMT 100 3%-points 

𝑣 Hot-wire anemometer 5% 

𝐶 𝐿𝐶𝑅 measurement bridge <0.1 % 

 

 

It is convenient to non-dimensionalise the pressure drop 

Δ𝑝 as it depends strongly upon the air velocity 𝑣. This 

yields the pressure drop coefficient [20]: 

𝜁 =
2Δ𝑝

𝜚𝑣2
. (2) 

Herein, 𝜚 is the density of moist air (Index ma) that is 

calculated with [21]: 

Figure 1. Schematic drawing of the experimental set-up: HVAC system of the room air-flow laboratory (top) and detail of 

the test section (bottom) with the measurement devices for temperature (𝑻), relative humidity (𝝋), velocity (𝒗), pressure drop 

(𝚫𝒑), electrical capacity 𝑪, and the function generator for the voltage 𝑼(𝒕) 
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𝜚 =
𝑝

𝑅ma𝑇
, and (3) 

𝑅ma =
𝑅da

1 − (
𝜑𝑝sat

𝑝
) (1 −

𝑅da

𝑅m
)

. 
(4) 

Herein, 𝑝 is the absolute pressure, 𝑇 is the temperature, 𝜑 

is the relative humidity, 𝑝sat(𝑇) is the saturation pressure, 

and 𝑅da = 287,2 J/(kg K) and 𝑅m = 461,4 J/(kg K) are 

the specific gas constants of dry air (Index da) and 

moisture (Index m), respectively  [21]. 

2.3 Measurement series 

The filter mounted in the HVAC channel was employed 

in the normal operation of the institute’s room air-flow 

laboratory in 2017. The measurements were carried out in 

two periods (May–August, November). During these 

periods, the afore-mentioned data points were recorded 

with one second time intervals. The time interval is not 

necessary for this investigation but has been determined 

due to secondary experiments not presented here. 

Moreover, distinguished experiments were carried out in 

which the filter has been humidified manually by sprays 

of water droplets. 

2.4 Machine learning algorithm 

Machine learning algorithms can be classified into two 

major groups. They are, firstly, supervised learning 

algorithms – where training data has to be manually 

labelled – and, secondly, unsupervised learning 

algorithms – where the algorithm detects patterns in the 

data on its own. The algorithm employed here belongs to 

the second group and is in particular a so-called anomaly 

detection algorithm [22, 23]. 

 

The data set obtained in the measurements is split into the 

following three subsets with their respective use cases: 

1) Training set: train the algorithm (60% of the 

data) 

2) Cross validation set: fine-tune the algorithm 

(20% of the data) 

3) Test set: assess the quality of the algorithm 

(20% of the data) 

 

The major intention is to use the test set for the assessment 

of the quality only. In order to manage the data, Python 3 

libraries are employed, in particular Pandas [24] and 

Scikit-learn [25,26] since they provide most flexibility for 

an automated workflow in which the anomaly detection 

algorithm was implemented. The data visualisation is 

carried out with the library matplotlib. 

 

The work flow is as follows: 

1) Data acquisition 

2) Data preparation (i.e., calculating derived 

quantities according to Eq. (2)) 

3) Data normalisation with the mean value 

(Eq. (6)) and variance (Eq. (7)) of the training 

set 

4) Training algorithm with the training data set 

5) Tuning the algorithm with a cross validation 

data set 

6) Testing the tuned algorithm with a test set 

7) Visualisation of the results 

 

The probability of a set of 𝑛 parameters 𝑥𝑖  | 𝑖 ∈ [1, 𝑛] to 

be abnormal is determined with [25,26]: 

𝑃(𝑥𝑖 , 𝜇𝑖, 𝜎𝑖
2) = ∏

1

√2𝜋𝜎𝑖

exp [−
(𝑥𝑖 − 𝜇𝑖)

2

2𝜎𝑖
2 ]

𝑛

𝑖=1

. (5) 

Herein, 𝑥𝑖 is the parameter, 𝜇𝑖 and 𝜎𝑖
2 are the mean value 

and the variance of the set, respectively. These are defined 

as follows: 

𝜇𝑖 =
1

𝑚
∑ 𝑥𝑖,𝑗 ,

𝑚

𝑗=1

 (6) 

𝜎𝑖
2 =

1

𝑚
∑(𝑥𝑖,𝑗 − 𝜇𝑖)

2
.

𝑚

𝑗=1

 (7) 

The values for these variables are determined for each 

parameter in the training step. A set of parameter values 

is abnormal, if 

𝑃(𝑥𝑖 , 𝜇𝑖, 𝜎𝑖
2) < 𝑃crit, (8) 

whereby 𝑃crit is a critical probability. Evaluation of the 

cross-validation set revealed that the critical probability 

shall be  𝑃crit = 10−5 allowing to find all anomalies and 

to prevent false-positives. In order to improve the 

accuracy of the machine learning algorithm, it is 

convenient to normalise the quantities as follows: 

𝑥̃𝑖,𝑗 =
𝑥𝑖,𝑗 − 𝜇𝑖

𝜎𝑖

. (9) 

It shall be stressed that the algorithm actually struggles if 

the electrical capacitance is employed in Farad. For the 

remainder of the paper, normalised quantities are 

considered. 

3 Results and discussion 

Figure 2 visualises the density distribution of both 

normalised quantities: electrical capacitance and pressure 

drop coefficient. It can be observed that the normalised 

electrical capacitance has a range of [-2.5, 2] with three 

moderate peaks in the proximity of the mean value. 

Contrary, the normalised pressure drop coefficient has a 

very narrow peak slightly below the mean value and a 

smaller peak approximately at 2.5. Moreover, both 
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quantities have maximum values at 10.3 (capacitance) and 

5.2 (pressured drop coefficient).  

 

 

Figure 2. Kernel density [26] of the normalised electrical 

capacitance (capacitance_norm) and pressure drop coefficient 

(zeta_norm) 

 Figure 3 presents the results of the anomaly detection 

machine learning algorithm applied on the training set. 

Herein, the crosses denote normal values, whilst the dots 

denote abnormal ones. There are two areas with abnormal 

parameter values. The first one is approximately at (1, 5) 

and the second one at (7, -0.5). It can be learned hereby 

that the first area corresponds to a dry but polluted filter 

and the second one belongs to a strongly humidified filter. 

Whilst the first area can be found for almost any state-of-

the-art filter system with a pressure drop and air-flow 

velocity measurement, the second one is presently not 

detectable. Here, the proposed electrodes come into action 

by providing the capacitance signal and allow some 

conclusion about the humidity of the filter. Henceforth, 

the risk of micro-organism growth can be assessed.  

 
Figure 3. Diagram of the normal (x) and abnormal (o) data of 

the normalised training set 

This diagram illustrates a problem of all data-driven 

algorithms: If the data basis has some bias or is somehow 

incomplete, the algorithm can be unable to work properly.  

Figure 3 clearly proofs that there are almost no data in the 

bottom left quadrant. If there were data, it would be 

considered, although the parameters obtained with the 

(incomplete) training set fit not perfectly.  However, there 

is no data available since the investigations were carried 

out in two stages. I.e., experiments had been finished 

before the data analysis started due to some organisational 

reasons. Therefore, an online learning algorithm can solve 

this problem as it adjusts the parameter set from time to 

time. 

Figure 4 provides some idea how this algorithm decides 

for a complete test set. In addition to the measured data, a 

synthetic data is generated randomly and discriminated in 

normal and abnormal parameter combinations. 

 

Figure 4. Diagram of the normal (x) and abnormal (o) data of a 

normalised synthetic test set 

4 Conclusion 

Since modern buildings have practically air-tight 

envelopes, mechanical ventilation becomes more and 

more important. Filters are required in this context in 

order to prevent pollutants from outside to enter the 

system. However, filters are prone to fouling, especially 

in humid environments, and, therefore, have to be 

changed on a regular basis. 

In order to substitute this rule-of-thumb-like process by a 

data-driven approach, a test set-up in the HVAC system 

of the room air-flow laboratory of the institute was 

designed and an air filter was equipped with electrodes 

made of stainless steel. The pressure drop over the filter 

and the electrical capacitance were measured and 

employed as indicators for the level of pollution and the 

micro-organism growth risk. 

Extensive measurement series were carried out in 2017, 

providing a lot of data for the machine learning algorithm. 

A data analysis and machine learning pipeline were 

implemented in Python 3 language that yields an efficient 

approach towards the problem.  

Finally, the following statements can be made: 

⎯ Correlation of humidity and electrical 

capacitance in the filter 

⎯ New quality of micro-organism growth risk 

assessment by electrical capacitance 

measurement: the higher the capacity, the 

higher the risk 

⎯ Efficient data analysis and machine learning 

algorithm 

 

Future work shall address an important point: The results 

of machine learning algorithms are only as good as the 

data is. It is planned to develop the machine learning 

algorithm towards an online learning algorithm in order to 
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carry out the analysis during the operation. Moreover, it 

is intended to apply this system also to other HVAC 

components. 

This work has been supported by the Federal Ministry for 

Economic Affairs and Energy of the Federal Republic of 

Germany under Contracts no. MF 140105 (SD, experimental 

investigations) and no. MF 170011 (AH, machine learning 

algorithm). 
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