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Abstract. In this study, an artificial neural network (ANN) was used to model the thermal performance of a novel 

direct-expansion solar-assisted sky-source heat pump (SSHP) during winter. The input parameters of the ANN take 

into account the weather conditions, water loop characteristics, and the compressor characteristics of the SSHP. The 

following four output parameters were adopted to evaluate the SSHP performance: the outlet water temperature of 

the water loop, electricity consumption, heat production, and the coefficient of performance. To increase the 

accuracy of the ANN and simultaneously investigate the effects of each of the input parameters on the performance 

of the SSHP, the combination of input parameters for the validation data set was varied in multiple case studies. 

Additionally, learning curves were introduced to clarify the relationship between the training data size and the 

generalization performance of the ANN. Finally, the ANNs with the best performance were selected and evaluated 

based on the test data set by using metrics such as the root mean square error. The reported results demonstrated 

that the ANN model has comparatively high SSHP winter performance prediction accuracy. 

1 Introduction 

Renewable energy has recently been receiving an increasing 

amount of attention because of increasing energy needs and 

the need to reduce greenhouse gas emissions [1]. There are 

multiple types of renewable energies that can be exploited as 

thermal resources for buildings, such as solar radiation and 

ground heat. However, every type of energy has its own 

advantages and disadvantages. For example, solar radiation is 

an abundant energy flow, but it has intermittent availability 

[2]. Hence, how to efficiently employ multiple types of 

renewable energies is becoming a difficult challenge. One of 

the usual solutions is to build a hybrid system integrating the 

supplementary components (e.g. solar-assisted heat pump) 

with a ground source heat pump [3-4]. Dai et al. carried out 

an experimental analysis of a solar assisted ground source 

heat pump system (SAGSHPS). Their results showed that the 

introduction of solar heat has a positive effect on the soil 

temperature recovery rate compared with the traditional 

ground source heat pump system [4]. However, the previous 

research mostly employ two renewable energy (e.g. solar 

energy and geothermal energy). Moreover, those hybrid 

system are usually designed for a single purpose (e.g. 

domestic hot water). Based on well-known information, we 

developed a multiple-source and multiple-use heat pump 

system (MMHP) system. This is a distributed water-source 

heat pump system that can utilize various types of renewable 

energies surrounding a building to meet a variety of thermal 

demands [2]. The system consists of a water loop that 

exchanges heat with a sky-source heat pump (SSHP), water-

source heat pumps for various heating and cooling purposes, 

and a ground heat exchanger (GHE) [2]. To verify its 

practicability and effects, a small experimental building 

(hereafter referred to as RE house) was constructed in 2017. 

In a previous report, this heat supply system and a detailed 

experimental analysis of the thermal performance of a sky-

source heat pump (SSHP) were described [5]. Although the 

SSHP is one kind of direct-expansion solar-assisted heat 

pump (DXSAHP), compared with traditional DXSAHP, it 

has extruded aluminium finned which is exposed to ambient 

environment on the opposite face of the outdoor panel instead 

of being covered with insulation. On the one hand, this unique 

design help the SSHP not only absorb heat from solar 

radiation, but also additional heat from the ambient air 

through natural convection and wind in winter. On the other 

hand, it can also help the same panel enhance dissipating heat 

when the panel works as a nocturnal radiator through 

nocturnal radiation and natural draft in the summer night [6]. 

Thus, the SSHP is one of the most important components of 

this heat source system and being able to predict the 
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performance of the SSHP is critical to improving not only the 

SSHP operation efficiency but also the overall system 

operation efficiency. Generally, models used to predict the 

performance of HVAC equipment can be classified as either 

a black-box model or physics-based model. Unlike the 

physics-based model, the black-box model can easily 

establish relationships between the inputs and outputs with 

good prediction accuracy in the absence of any domain 

knowledge. Moreover, the black-box model has a low 

computational cost, and its weights can be adjusted for 

compatibility with the dynamic characteristics of HVAC 

equipment based on the collected data [7]. Artificial neural 

network (ANN) is one of the most widely used black-box 

models because of its ability to approximate complicated 

nonlinear relationships when a large amount of data is 

available. Some researchers have used ANN to predict the 

thermal performance of traditional DXSAHP. Mohanraj et al. 

used an ANN to predict the performance of a DXSAHP in 

winter [8]. Because their experiment was conducted under 

steady-state conditions, the input parameters of the ANN 

were generalized and categorized as either solar radiation or 

outdoor temperature parameters, and no other factors were 

considered. Moreover, the data sets used to train and test the 

ANN were limited to 50 and 10, respectively, which can be 

viewed as insufficient, as a small data set usually results in 

poor generalization of the trained ANN especially when the 

number of data is less than the number of weights and biases 

in ANN used. Gunasekar et al. developed an ANN to predict 

the energy performance of a photovoltaic-thermal evaporator 

used in solar assisted heat pumps and applied analysis of 

variance to identify the significant ambient parameter 

influencing the energy performance. The results showed that 

solar intensity and ambient temperature are the most 

influencing parameters while ambient wind velocity and 

ambient relative humidity had a less effect on the energy 

performance [9]. Having gone through above literature, it is 

observed that no related reports on using ANN to predict the 

thermal performance of a novel direct-expansion solar-

assisted heat pump such as SSHP. Therefore, in this study, an 

ANN was constructed based on the large amount of data 

collected from the previous winter field experiment, and 

subsequently used to model the performance of an SSHP. 

Additionally, to ensure that the ANN achieves high accuracy, 

and to investigate the effects of different input parameters on 

the performance of the SSHP, case studies were performed 

for different combinations of the input parameters. To begin, 

in Section 2, we will explain the full system, with particular 

focus on the SSHP, and the experiment. Then, in Section 3, 

we will provide a basic description of the ANN, the input and 

output parameters to be implemented in the ANN, and the 

development of the ANN model. Section 4 focuses on the 

results and discussion, and Section 5 summarizes this study.  

2 Experiments 

2.1. Description of a multiple-source and multiple-
use heat pump system 

The direct-expansion solar assisted SSHP is one of the most 

important components of a multiple-source and multiple-use 

heat pump (MMHP) system, which consists of a ground heat 

exchanger (GHE) and various water-source heat pumps 

besides the SSHP. All components are interconnected via a 

water-circulating loop to form a network that can transfer 

thermal energy. Figure 1 depicts this heat supply system. It is 

expected to systematically and efficiently exploit multiple 

types of natural renewable energies that can be derived from 

terrestrial and solar radiation sources to diversify thermal 

utilization. To verify its practicability and effects on a small 

experimental building, the RE house was constructed at the 

Kashiwa Campus of the University of Tokyo in 2017, as 

shown in Figure 2. For an in-depth introduction to the MMHP 

system and the RE house, refer to [2, 4].  

 

Fig. 1. Heat-supply system diagram of the RE house 

 

Fig. 2. RE house 

2.2 Description of the SSHP 

Figure 3 shows the refrigerant circuit of the SSHP module. It 

mainly consists of a compressor unit, an outdoor solar 

collector panel, and a plate-type heat exchanger. All of these 

main components are connected through a refrigerant circuit 

via R32. In winter, the heat exchanger works as a condenser 

for the SSHP by condensing the gaseous refrigerant flowing 

through the exchanger to dissipate heat into the water loop. 

The SSHP panel is formed by several finned tubes placed in 

parallel. Figure 4 shows the cross section of the SSHP 

outdoor panel. The top of the panel is an unglazed surface on 

which photovoltaic cells are attached to generate electricity; 
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the opposite face of the panel has extruded aluminum finned 

tubes to further improve the heat transfer between the outdoor 

environment and the refrigerant passage. In winter, the SSHP 

panel works as an evaporator by evaporating the liquid 

refrigerant flowing through the refrigerant passage in order to 

collect heat from ambient air and solar radiation. When solar 

radiation is not sufficiently available to meet the required 

thermal output, the evaporation temperature falls lower than 

that of the ambient air in order to extract additional heat from 

the ambient air. When solar radiation increases, the 

refrigerant preferentially absorbs heat from solar radiation to 

make the surface temperature of the SSHP panel near or 

higher than that of the ambient air. The specifications of the 

SSHP module are presented in Table 1. For an in-depth 

introduction to the SSHP system, refer to [2, 4].  

 

Fig. 3. Refrigerant circuit of SSHP module 

 

Fig. 4. Cross section of SSHP outdoor panel 

Table 1. Specifications of the SSHP module 

Panel Angle 30° facing due south 

Panel Area About 8 

Thermal Output 5 kW(nominal) 

Electricity Generation 

Capacity 

1.2 kW(nominal) 

Refrigerant R-32 

2.3 Experiment overview 

The winter experiments were carried out at the Kashiwa 

Campus of the University of Tokyo throughout the month of 

March in 2018. A floor-heating heat pump (FHHP) was the 

only heating equipment in operation. SSHP and GHE were 

used as heat-source equipment to meet the FHHP heat 

demands by transferring heat through the thermal network.  
We adopted two different control schedules for the SSHP heat 

collection operation, as shown in Figure 5. The first schedule 

was used from March 1 to 9. The circulation pump was run 

during the daytime (from 8:00 to 18:00) to heat the circulating 

water. When the inlet water temperature of the water loop 

dropped to 15 ℃, the SSHP began continually collecting heat 

until the inlet water temperature of the water loop exceeded 

17 ℃. During the night-time, i.e., from 18:00 to 8:00 on the 

next day, the start/stop temperature of the SSHP was lowered, 

and heat was collected through the GHE to exploit 

underground heat. In addition, the circulation pump was 

interlocked with the SSHP compressor. The second schedule 

was used from March 10 to March 31. We changed the 

daytime period in the second schedule in order to optimally 

exploit solar radiation. Furthermore, the stop temperature of 

the SSHP was reduced to 10 ℃. For an in-depth explanation 

of the control schedule of the system, refer to [4]. 

 
(a) March 1 to 9 control schedule 

 
(b) March 10 to 31 control schedule  

Fig. 5. Control schedules for SSHP heat collection operation during 

the month of March 
 

The SSHP circulation pump was set to operate for a duration 

of 27 minutes and subsequently suspend operation for a 

period of three minutes in order to sample the circulating 

water temperature. Since the circulating water is tap water to 

which antifreeze was not added, this operation strategy is 

presumed to be able to prevent the circulating water 

temperature from freezing regardless of the time of day in 

winter.  
Several data loggers were installed in different locations to 

measure a comprehensive amount of data from the SSHP for 

experimental analysis and ANN modeling. The following 

measurements were performed:      

a. Water flow rate measured on the water loop side of the 

plate-type heat exchanger by using a flowmeter 

(accuracy: ± 1.6% of full scale) 

b. Inlet and outlet water temperature of the water loop 

measured at the inlet and outlet of the plate-type heat 

exchanger by using platinum resistance bulbs (Pt-100, 
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accuracy: ± (0.15 + 0.002|t|) ℃) 

c. Outdoor temperature and relative humidity measured at 

a weather station near the RE house by using a thermo-

hygrometer (temperature measurement accuracy: ± 

(0.226 − 0.0028t) ℃ 

d. Solar radiation, long-wave solar radiation from the sky, 

and long-wave solar radiation from the ground 

measured at the weather station by using a pyranometer 

(accuracy: non-linearity < 1%) 

e. Wind speed (accuracy: 0.3 m/s when wind speed is less 

than 35 m/s) and wind direction (accuracy: 3° when 

wind speed exceeds 1 m/s) measured at the weather 

station by using a weather instrument 

f. Electricity consumption of the compressor measured by 

using a power monitor (accuracy: ± 2.0% of full scale ± 

1 digit) 

g. Inlet and outlet refrigerant temperature of the SSHP 

panel measured at the inlet and outlet of the refrigerant 

passage, and the average was used to represent the 

evaporation temperature of the SSHP 

All the above measurements were performed under the 

condition of a 5-s sampling interval, and the average value 

per minute was calculated.  

In order to remove the data collected in an unstable state of 

operation, such as the periods of sudden startup and shutdown 

of the SSHP compressor, Qsshp (amount of heat produced by 

the SSHP condenser), Vw (water flow rate), and Wcom (amount 

of electricity consumed by the SSHP compressor) were used 

as the criteria to judge whether the raw data should be deleted 

or retained; Table 2 lists the values for these criteria. 

Consequently, a data set totaling 4598 data points was 

obtained. Heat production and the coefficient of performance 

(COP) of the SSHP were calculated by Equations (1) and (2). 

The remaining input parameters did not require any 

calculations subsequent to measurement. 

 

    Qsshp = Vw × ρw × cw × (Tw,o − Tw,i)                 (1) 

                              COPsshp = Qsshp / Wcom                           (2) 

 

Table 2. Criteria used to remove unstable data  

Parameter Value 

Qsshp ≥ 4.5 

Vw ≥ 25 

Wcom ≥ 0.1 

3 ANN modeling for performance 
prediction 

3.1. ANN description 

An ANN is regarded as a type of black-box model that 

mimics human brain function to build a mapping relationship 

between inputs and outputs via interactions between artificial 

neurons in different layers. ANNs have recently been 

garnering attention and have been successfully applied to 

practical problems in various fields owing to the following 

advantages: 1) their ability to approximate complicated 

nonlinear relationships and extract knowledge within input 

and output data, 2) their low computational cost, and 3) their 

ability to establish relationships between the inputs and 

outputs with good prediction accuracy. In HVAC research, 

ANNs are used to model the performance of thermal systems 

and to predict the energy consumption of a building. The most 

commonly implemented ANN is the feedforward neural 

network (FNN). A typical FNN is shown in Figure 6; it 

consists of three layers: an input layer, a hidden layer, and an 

output layer. Each layer comprises neurons connected to 

others by an adaptive weight that is adjusted by training pairs 

of input and output data. The neurons in the input layer are 

typically referred to as variables or features, and they provide 

outside information to the network without any computation. 

The neurons in a hidden layer are placed between the input 

and output layers, and thus have no direct connection to 

outside information. The numbers of hidden layers and 

hidden neurons represent the ability of the ANN to model 

intricate nonlinear relationships. However, adding too many 

hidden layers and hidden neurons is not advisable as it results 

in overfitting, which means that the ANN overfits accidental 

regularities in the data, such as data noise, and thus harm the 

generalization performance of the ANN. The neurons in the 

output layer represent the target (predicted) values. The error 

is computed in the output layer and repeatedly distributed 

back through the network layers to update the weights in 

order to minimize the error, which is typically referred to as 

the backward propagation of error. For an in-depth 

introduction to the theory of ANNs, refer to [10, 16]. 

 

Fig. 6. Architecture of an FNN  

3.2. Definition of the input and output parameters 

As previously mentioned, in this study, the following four 

output parameters were adopted to describe the thermal 

performance of SSHP during winter: the outlet water 

temperature of the water loop, electricity consumption, heat 

production, and the COP. To boost the prediction accuracy of 

the ANN, prior to determining the input parameters of the 

ANN, we analyzed factors that may influence the 

performance of the SSHP based on the analysis of the 

measurement results and previous studies. By considering the 

SSHP as a black box with its own particular characteristics, 

and which is influenced by the ambient environment, the 

influencing factors can be generalized as weather conditions, 
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water loop characteristics, and the compressor characteristics 

of the SSHP. 

3.2.1 Weather conditions 

Figure 7 shows the March 2 measurement results for the 

SSHP. In this figure, (a) and (b) clearly show that, from the 

start of operation, the COP of the SSHP fluctuated as the solar 

radiation and outdoor temperature varied. Thus, it can be 

inferred that the COP of the SSHP was mainly influenced by 

solar radiation and outdoor temperature. In addition, it was 

found that long-wave solar radiation influenced SSHP 

performance, although the level of influence was minimal 

[11]. According to the study by Kong et al., depending on the 

relationship between the surface temperature of an SSHP 

panel and the outdoor temperature, the wind speed may have 

positive or negative effects on the performance of the SSHP 

[12]. This phenomenon is illustrated in Figure 7 (d). When 

the intensity of solar radiation exceeded the maximum 

thermal output of the SSHP (about 5 kW here), the surface 

temperature of the SSHP panel tended to become higher than 

the outdoor temperature. At this time, the rising wind speed 

would induce a large amount of heat loss and cause the SSHP 

collection efficiency to decrease. In contrast, when the 

intensity of solar radiation was low because of weather 

conditions such as a cloudy day, the surface temperature of 

the SSHP panel tended to drop below that of the outdoor 

temperature. At this time, the rising wind speed would 

enhance the rate of heat transfer to help the SSHP panel 

acquire more heat from the ambient air, thereby improving 

the COP and collection efficiency of the SSHP. There are few 

studies on how much wind direction and relative humidity 

affect the thermal performance of an SSHP. Thus, in this 

research, to examine the respective degrees of the influence, 

both wind direction and relative humidity were incorporated 

into the ANN as input parameters.  

 
(a) Weather conditions on March 2 

 
(b) SSHP performance fluctuation 

 
(c) Changes in the SSHP water loop 

 
(d) Changes in the evaporation and surface temperatures of 

an insulated SSHP panel 
Fig. 7. Measurement results for March 2 

3.2.2 Water loop characteristics 

Since the inlet water temperature and water flow rate of the 

water loop tended to significantly affect the condensation 

temperature of the SSHP compressor, these factors were 

implemented as two of the input parameters. 

3.2.3 SSHP compressor characteristics 

The speed of the compressor is directly related to the amount 

of circulated refrigerant, which determines how much heat 

the SSHP can output. In addition, in our experiments, the 

speed of the compressor was automatically adjusted 

according to the changes in the average evaporation 

temperature of the SSHP panel; thus, the average evaporation 

temperature was used as one of the ANN input parameters.  

Figure 8 shows the initial input and output parameters that 

were introduced to the ANN in order to develop a black-box 

model based on the above analysis. 

 

Fig. 8. Black-box model of the SSHP 
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3.3. Development of the ANN 

In this study, we used the neural network toolbox of 

MATLAB2017a to construct the ANN for the SSHP winter 

thermal performance model. A three-layer FNN (input layer 

- hidden layer - output layer) was implemented as the initial 

ANN configuration because, according to the universal 

approximation theorem, an FNN with a single hidden layer 

with sufficient neurons can approximate any complicated 

function that requires continuous mapping between finite 

spaces [13]. The number of neurons in the input layer was set 

to equal the number of the input parameters introduced to the 

ANN; this number was varied, and it is discussed in Section 

4. The number of neurons in the hidden layer was set to an 

initial value of 10. The number of neurons in the output layer 

was set to 1, as this means that an ANN was created and 

trained for every output parameter. The Levenberg-

Marquardt algorithm was employed as the optimization 

method, as it is highly recommended as a tool to train an ANN 

constructed by using the neural network toolbox owing to its 

high run speed and prediction accuracy [14]. The available 

data collected in the winter field experiment (4598 data) was 

split into the following three data subsets: the training data set 

(70%, 3219 data points), the validation data set (15%, 689 

data points), and the test data set (15%, 690 data points). The 

training data set was used to optimize the weights of the ANN 

in order to minimize the error between the predicted output 

and target value. The validation data set was used to 

discontinue network training to prevent overfitting if the 

network performance on the validation data set failed to 

improve, or remained the same for six epochs in a row; this 

method is referred to as early-stopping [14]. The validation 

data set was also used to optimize input parameter selection 

in order to maximize ANN accuracy, while also enabling 

investigation into the effects of the input parameters on SSHP 

performance. The remaining test data set was used to assess 

the generalization performance of the best ANN based on the 

following three metrics: the coefficient of determination (R2), 

root mean squared error (RMSE), and mean absolute error 

(MAE). Before training the ANN, we implemented random 

initialization to randomize the weight values within the 

interval of [-1, 1]. The activation functions implemented in 

the hidden and output layers were a hyperbolic tangent 

sigmoid function and linear function, respectively. In addition, 

data normalization was also implemented during training 

because the ranges of the values of the input data points were 

significantly different. 

4 Results and discussion 

4.1. Selection of the best combination of input 
parameters 

To realize a highly accurate ANN model and simultaneously 

investigate the effects of the input parameters on the 

performance of the SSHP, six case studies with different 

combinations of input parameters were carried out by using 

the validation data set; the case studies are outlined in Table 

3. 

Table 3. Case studies 

Case Input parameters  

Case 1 Ta, Is, νw, Ja, Jt, Tw,i, Vw 

Case 2 Case1, βw 

Case 3 Case1, φa 

Case 4 Case1, βw, φa 

Case 5 Case1, Tr 

Case 6 Case1, βw, φa, Tr 

The results of all of the case studies are shown in Figure 9. 

Focusing on the results from Case1 – Case4, it was found that 

βw (wind direction) and φa (relative humidity) only minimally 

influenced the accuracies of all output parameters. 

Conversely, comparing the results from Case5 and Case6, i.e., 

the case studies in which the average evaporation temperature 

of the SSHP panel Tr was taken into account, to the results 

from Case1 ~ Case4 revealed that the prediction accuracy of 

the ANN model could be considerably increased by 

introducing Tr, which was used to automatically control the 

speed of the SSHP compressor in our experiment. We 

subsequently selected the best ANNs based on these results 

and assessed their generalization performance in the test data 

set. The test data results yielded the following results for 

water-loop outlet water temperature, electricity consumption, 

heat production, and COP, respectively: RMSE values of 

0.045 ℃, 0.027 kW, 0.082 kW, and 1.358; R2 values of 0.999, 

0.974, 0.953, and 0.968; MAE values of 0.028 ℃, 0.017 kW, 

0.050 kW, and 0.877. These reported results indicate that the 

ANN model developed in this study can achieve relatively 

high SSHP winter performance prediction accuracy. 

 

(a) Outlet water temperature of the water loop 

 

(b) Electricity consumption 
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(c) Heat production 

 

(d) SSHP COP 

Fig. 9. Comparison of the 10-epoch-averaged values for the three 

metrics calculated as based on the validation data set for all six 

SSHP thermal performance case studies 

4.2. Learning curves: how the training data size 
affects the generalization performance of the ANN 

Generally, the generalization performance of models can be 

improved by training models on a large data set because a 

large data set reduces overfitting and thus increases the 

extrapolation accuracy beyond the training data. In this study, 

we used learning curves to clarify the relationship between 

the training data size and the generalization performance of 

the ANN; the results are shown in Figure 10. The training data 

size and generalization performance (e.g., RMSE, or R2 

metric used to represent the generalization performance of 

models), or training error, were plotted as learning curves 

[15-16]. Initially, the entire training data set (70%, 3219 data 

points) was split into 16 subsets (N = 20, 30, 50, 100, 200, 

300, 500, 700, 1000, 1200, 1500, 1800, 2000, 2500, 3000, and 

3219) that were used to respectively train 16 ANNs. Then, the 

validation data set (15%, 689 data points) was used to tune 

the parameters of the artificial neurons. Lastly, each ANN 

was evaluated by using the remaining test data set (15%, 690 

data pints). Since each training epoch produces a different 

ANN even when the same training data is used, to minimize 

statistical variation, the calculated results were the respective 

averages of 100 epochs. From the learning curves shown in 

Figure 10, it can be seen that, with the exception of one outlier 

in the third subset (50 data points) that shows an opposite 

trend caused by statistical fluctuations, the test error curve 

initially rapidly decreases in response to an increased training 

data size. Conversely, the training error curve shows an initial 

rapid increase. This makes sense, because it is harder to fit a 

larger data set for a fixed-capacity ANN. The figure also 

shows that the effects of incrementally increasing the training 

data size seems to gradually diminish until both curves begin 

to plateau. More specifically, convergence can be observed 

when the data size is approximately 2000–2500, with the 

slopes of both curves approaching zero; this means that a data 

size above 3219 would not substantially improve the 

generalization performance of the ANN. Moreover, with the 

largest data size, the gap between the training error and test 

error is small, indicating that the proposed ANN has low 

variance. 

 

Fig. 10. Learning curves for the SSHP COP showing how the 

training data size affects the generalization performance of ANN 

 

5. Summary 

In this study, an ANN was developed and used to model the 

winter thermal performance of a novel direct-expansion 

solar-assisted heat pump. We considered the SSHP to be a 

black box that is influenced by the ambient environment and 

its own characteristics in order to determine the input and 

output parameters of the ANN model. Consequently, the 

following three input parameters were considered: weather 

conditions, water loop characteristics, and the SSHP 

compressor characteristics. Based on the results of previous 

studies and our experimental analysis, we analyzed how each 

input parameter would influence the winter thermal 

performance of the SSHP. The following four output 

parameters were adopted to evaluate the performance: the 

water-loop outlet water temperature, electricity consumption, 

heat production, and the COP. The data collected during the 

winter field experiment was partitioned into the following 

three data sets: 1) the training data set used to optimize the 

ANN weights in order to minimize the error between the 

predicted output and target value, 2) the validation data set 

used to tune the parameters of the ANN to prevent overfitting 

or facilitate model selection, and 3) the test data set used to 

assess the generalization performance of the fully trained 

ANN. To maximize accuracy of the ANN model and 

investigate the effects of the input parameters on the 

performance of the SSHP, case studies with different 

combinations of input parameters were carried out and 

evaluated in terms of the following metrics: R2, RMSE, and 

MAE, which were calculated as based on the validation data 

set. The results from the case studies showed that the 

prediction accuracy of the ANN model could be considerably 
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improved by taking into account the average refrigerant 

temperature of the SSHP panel. However, it was apparent that 

the wind direction and relative humidity had minimal 

influence on the accuracies of all output parameters. 

Additionally, learning curves were introduced in this study to 

clarify the relationship between the training data size and the 

generalization performance of the ANN, as these results 

could help us determine whether it is necessary to spend extra 

money and time to acquire additional data in order to further 

improve the generalization performance of the ANN. Finally, 

the best ANNs were selected and evaluated as based on the 

test data set by using the above-mentioned metrics. The 

predicted performance results indicated that the proposed 

ANN model is able to predict the winter thermal performance 

of an SSHP with relatively high accuracy. Because the ANN 

developed in this study can establish relationships between 

the inputs and outputs with better prediction accuracy than a 

physics-based model, this research is expected to help 

researchers easily predict the thermal performance of a direct-

expansion solar-assisted heat pump such as the SSHP under 

different conditions. Moreover, this type of ANN-based 

model can be effectively integrated into control techniques, 

such as the model predictive control technique, because it has 

low computational cost and its weights can be adjusted to suit 

the dynamic characteristics of HVAC equipment based on the 

collected data [17].  

 

Nomenclature 

Ta: Outdoor temperature [°C] 

Is: Solar radiation [W/m2] 

νw: Wind speed [m/s] 

Ja: Long-wave solar radiation (from sky) [W/m2] 

Jt: Long-wave solar radiation (from ground) [W/m2] 

βw: Wind direction [°] 

φa: Relative humidity [%] 

Tr: Average refrigerant temperature of SSHP panel [°C] 

Qsshp: Heat production of SSHP [kW] 

Vw: Water flow rate of water loop [m3/s] 

ρw: Density of the circulating water [kg/m3] 

cw: Specific heat of the circulating water [J/(kg·K)] 

Tw,o: Outlet water temperature of water loop [°C] 

Tw,i: Inlet water temperature of water loop [°C] 

Wcom: Electricity consumption of the compressor of the SSHP 

[kW] 
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