
* Corresponding author: t.b.salcedorahola@hhs.nl

Forecasting residential gas consumption with machine learning
algorithms on weather data

Brian de Keijzer1, Pol de Visser1, Víctor García Romillo2, Víctor Gómez Muñoz3, Daan Boesten1, Megan Meezen1 and
Tadeo Baldiri Salcedo Rahola1*

1Faculty of Technology, Innovation and Society, The Hague University of Applied Sciences, Rotterdamseweg 137, 2628 CN, Delft,
The Netherlands
2Faculty of Engineering, University of the Basque Country, Paseo Rafael Moreno 3 48013 Bilbao, Vizcaya, Spain
3Escuela Politécnica Superior, University Francisco de Vitoria, Carretera Pozuelo a Majadahonda, Pozuelo de Alarcón, Madrid,
Spain

Abstract - Machine learning models have proven to be reliable methods in the forecasting of energy use
in commercial and office buildings. However, little research has been done on energy forecasting in
dwellings, mainly due to the difficulty of obtaining household level data while keeping the privacy of
inhabitants in mind. Gaining insight into the energy consumption in the near future can be helpful in
balancing the grid and insights in how to reduce the energy consumption can be received. In collaboration
with OPSCHALER, a measurement campaign on the influence of housing characteristics on energy costs
and comfort, several machine learning models were compared on forecasting performance and the
computational time needed. Nine months of data containing the mean gas consumption of 52 dwellings on
a one hour resolution was used for this research. The first 6 months were used for training, whereas the last
3 months were used to evaluate the models. The results showed that the Deep Neural Network (DNN)
performed best with a 50.1 % Mean Absolute Percentage Error (MAPE) on a one hour resolution. When
comparing daily and weekly resolutions, the Multivariate Linear Regression (MVLR) outperformed other
models, with a 20.1 % and 17.0 % MAPE, respectively. The models were programmed in Python.

1 Introduction
In recent years the European Commission has set
ambitious CO2 emission reduction targets. As a
consequence, the Dutch government has been
increasingly regulating the energy sector. The
Netherlands aims to be free of natural gas use by the end
of 2050 [1]. Therefore, the importance of diminishing
natural gas consumption in dwellings is growing.

Gaining insight in the prediction of gas consumption
in dwellings is critical to meet the Dutch government
requirements. However, a vast number of research has
been conducted towards energy consumption prediction
in commercial and office buildings [2, 3, 4, 5, 6]. Thus far,
little research has been conducted to predict gas
consumption on single household level due to the
difficulty of obtaining the energy use data due to data
privacy [7]. From commercial and office building energy
forecasting research, Alberto Hernandez Neto [3]
concluded that deep neural networks outperform physical
simulation models by 3-6 %. Furthermore, according to
Jurado López [8], weather conditions have the highest
correlation to gas use. It is worth noting that using
multiple weather parameters as features in prediction
models improve the accuracy of the model [3]. This paper
focusses on comparing the accuracy of widely discussed

machine learning algorithms on an hourly, daily and
weekly resolution and ultimately, creating a model that
can predict the natural gas use of dwellings as accurate as
possible. Different models were made and their results
were evaluated. This was done with a dataset containing
nine months of the mean hourly gas consumption data
from a total of 52 dwellings in The Netherlands, together
with the mean hourly weather data of a nearby weather
station. In this paper the models used as less features as
possible, to minimize the computation power required,
which enables the models to be able to run on computers
with limited computer power in dwellings.

2 Methodology

This paper focusses on the evaluation of different machine
learning models. Specifically the Long Short-Term
Memory (LSTM), Gated Recurrent Unit (GRU) and
Convolutional Neural Network (CNN). These deep
learning algorithms have shown the best potential for this
type of prediction [1, 5, 6, 9, 4]. In most of the previously
listed references, the models were based on electricity
prediction of commercial and office buildings. These
algorithms are called complex models in literature. The
accuracy of the models is dependent on the environment
of the research and chosen features. Consequently, the

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

 © The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0
 (http://creativecommons.org/licenses/by/4.0/).

mailto:t.b.salcedorahola@hhs.nl

models need to be verified on residential households
because this environment is different from commercial
buildings. Commercial buildings usually have a fixed
energy use time schedule, while dwellings have more
variation in its energy use pattern [8].

In addition to the complex models, Multivariate
Linear Regression (MVLR) and Deep Neural Network
(DNN) have shown promising results in comparison to
their simplicity [5, 10]. These models are called simple
models in literature. The different models are discussed in
their respective subchapters.

In this section the way the data was collected and
processed is discussed. Insights are given on what
machine learning methods were applied and which
metrics were used for the evaluation of the models. The
same metrics were used to evaluate the different machine
learning models. Furthermore, this section clarifies the
commonly used environmental settings for all the models.
All the models were programmed in Python.

2.1 Data collecting and processing

The data used in this research was gathered by the
OPSCHALER project from 2017-02 to 2017-12. It
contained data concerning gas and electricity
consumption. This information was obtained from the
smart meters of 52 different dwellings, everything was
anonymized and therefore the dwelling locations were
unknown. The data acquisition period from the dwellings
varied from one to nine months. The electricity data was
sampled with a ten second resolution, whereas the gas
consumption was sampled with a one hour resolution.
These sampling periods are visualized in Figure 1.

Fig. 1. Distribution of the data acquisition from all different
dwellings. The number in each grey selected area is the number
of dwellings of which data was gathered from during this period.

Due to an uneven and scarce distribution of the data,
the mean of all dwellings at each timestamp was taken
along with its standard deviation. This represented the

mean gas use on the aggregated level, e.g. a block of 52
dwellings.

In addition to this, weather information obtained from
the Royal Netherlands Meteorological Institute (KNMI)
station in Rotterdam was used. This was the weather
station most nearby to all dwellings. However, the
distance to the most distant dwelling was 103 km. The
weather information was sampled with a 15 minute
resolution.

One of the goals of this research was to use as less
features as possible, therefore a selection of the used
parameters was made. Parameters referred to all the
available variables from the original dataset, whereas
features referred to the variables that were selected to
forecast the target ‘gasUse’. According to [12, 13] air
temperature and calendar related features were the most
relevant to use when predicting gas consumption in the
residential sector. In this research the target was called
‘gasUse’, being this the gas consumption in an interval of
an hour and measured in [m3]. As a baseline, the
parameter which had the highest Pearson correlation
coefficient 𝑃𝑃 with ‘gasUse’ was selected as a feature. In
this case this parameter was the temperature 𝑇𝑇. The other
parameters that had a Pearson correlation coefficient with
the temperature that suffixes |𝑃𝑃| < 0.1, were selected.
Setting this threshold to |𝑃𝑃| < 0.1 minimized the
influence of the features on each other. All the used
parameters are visible in Table 1.

Table 1. Features extracted from the available parameters.
*Values have been calculated.

Features Unit Description

FF m/s Wind speed at 10 m

RG mm/h Rain intensity

T °C Temperature at 1,5 m (1
minute mean)

hour of day - Hour of day at given the
timestamp*.

day of week - Day of week at given the
timestamp*.

season - Season of the year at given
the timestamp*.

The weather data was sampled with a 15 minutes

resolution, whereas the ‘gasUse’ was sampled with a one
hour resolution. To combine these two datasets into one,
the weather data was down sampled to one hour by mean
and combined with the ‘gasUse’. Not a Number (NaN)
values appeared in the intervals of time where the data
acquisition system stopped gathering information, this
was the case for the features and target. All NaNs were
removed from the dataset.

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

2

Fig. 2. A visualization of the train, validation and test dataset distribution on a daily resolution.

2.2 Train, test & validation dataset

All models used the same train, validation and test dataset.
A visualisation of the distribution of the train, validation
and test dataset is shown in Figure 2. The first 70 % of the
dataset was used as the train set. The test set containing
the remaining 30 % was used for cross-validation of each
model. During training of the neural networks, the last 20
% of the train set was taken as the validation set.

2.3 Model evaluation

Neural networks use an optimizer to minimize the loss
function. This can be interpreted as the least squares
method for linear regression which minimizes the squared
residuals. The loss function used for the neural network
models in this paper was the Mean Squared Error (MSE)
and is defined as:

MSE = 1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1 . (1)

Where 𝑌𝑌𝚤𝚤� is the 𝑖𝑖-th ground truth value, 𝑌𝑌𝑖𝑖 is the 𝑖𝑖-th
predicted value and 𝑛𝑛 is the total number of samples.

Two positive properties of the MSE is that in general
it is relatively computationally inexpensive and is
sensitive to outliers because the difference between 𝑌𝑌𝑖𝑖 and
𝑌𝑌𝚤𝚤� is squared. This sensitivity to outliers had a positive
influence on the used dataset because the outliers in the
gas consumption represent valid data points, e.g. they
were not corrupt data due to malfunctioning of the
measurement devices.

Two other available loss functions are the Mean
Absolute Percentage (MAPE) and the Symmetric Mean
Absolute Percentage Error (SMAPE). MSE was chosen
over MAPE and SMAPE because they are less sensitive
for outliers. Where MAPE is defined as:

MAPE = 100%
𝑛𝑛

∑ |𝑌𝑌𝚤𝚤�−𝑌𝑌𝑖𝑖|
|𝑌𝑌𝑖𝑖|

𝑛𝑛
𝑖𝑖=1 (2)

, and SMAPE as:

SMAPE = 100%
2𝑛𝑛

∑ |𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤� |
|𝑌𝑌𝚤𝚤� |+|𝑌𝑌𝚤𝚤� |

.𝑛𝑛
𝑖𝑖=1 (3)

Notice how the MSE is scale dependent whereas
MAPE and SMAPE are in percentages. The MAPE and
SMAPE were used as evaluation metrics, together with
MSE to determine the performance of each model.

2.4 Optimizers and learning rate scheduler

Like stated in chapter 2.3, neural networks use an
optimizer to minimize the loss function. In this research
Adam [15] and Nadam [16] were used for the models. The
used optimizer is specified per model in their respective
subchapters. The main difference between Adam and
Nadam is that Adam is essentially RMSprop with
momentum whereas Nadam is Adam RMSprop with
Nesterov momentum. This is simplified by imagining a
curved plane in ℝ3. When trying to get to the lowest point
of this plane, Nadam will jump over hills more quickly
than Adam would by default. Adam and Nadam were
chosen instead of the commonly used Stochastic Gradient
Descent (SGD) method, because they converge quicker
than SGD does [17].

To improve the rate of convergence of the loss
function, a cosine annealing learning rate scheduler with
periodic restarts was applied to the optimizer. Together
with improving the rate of convergence, this also gives the
ability to find a lower and wider minimum [18].

Regularly, without the learning rate scheduler, the
learning rate 𝜂𝜂𝑡𝑡 is set to a fixed value for each batch within
the total amount of epochs 𝑇𝑇𝑖𝑖 . Whereas with the learning

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

3

rate scheduler, the learning rate is changed per batch
within the 𝑖𝑖-th run as follows [19]:

 𝜂𝜂𝑡𝑡 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 + 1
2

(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖)(1 + cos �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑖𝑖
𝜋𝜋�. (4)

Where 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 and 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 are the ranges for the learning rate
and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 are the number of epochs since the last restart.

2.5 Feature and batch normalization

The features 𝑋𝑋 were standardized by removing the mean
and scaling to unit variance using the ‘StandardScaler’
function from scikit-learn. This function scaled all feature
samples by removing the mean and scaling to unit
variance. This prevents one or more features dominating
the others. The models also converge less quick and had a
likelihood to have a lower accuracy when the features are
not scaled. Each feature from the features train dataset
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 were scaled independently. The standard score 𝑍𝑍 of
the feature sample was calculated as [20]:

𝑍𝑍 = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑢𝑢
𝑠𝑠

 (5)

Where 𝑢𝑢 is the mean value of the sample and 𝑠𝑠 is the
standard deviation from the sample. The standard score
was stored and used to also transform the features 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
from the test dataset. The standard score was not being
recalculated for the test set. This prevents having data
leakage from the distribution of the feature samples from
the test- to the train-set.

2.6 One hot encoding

The hour of the day, day of the week and current season
values were extracted as features from the timestamp of
each row in the dataset. Where hour of day ranged from 0
to 23, day of the week from 0 to 6 and season from 1 to 4.
These features were one hot encoded. This transformed
the data so each value of the feature had a separate column
in the dataset, as for example this matrix:

�
0
1
2
� → �

1 0 0
0 1 0
0 0 1

� (6)

Where the day of the week is represented as a number in
the column vector. After transforming this column vector
to the 3 × 3 matrix, each column represents a day of the
week. With 1 representing that at given row is currently
that day of the week. Where column one represented that
row being on a Monday, column two being on a Tuesday
and column three being on a Wednesday. Representing
the features extracted from the timestamp in this way
allows the models to assign different weights to for
example 07:00 AM on a Monday and 09:00 AM on a
Saturday.

2.7 Architecture evaluations

Hyperas was used to evaluate different architectures of
each neural network model. A commonly used
distribution of nodes and layers was set as the available
parameter space. Hyperas was set to evaluate a fixed
amount of possibilities from the parameter space. The
amount of evaluations was chosen so the total evaluation
time per model took 24 hours. During each evaluation
Hyperas trained a different architecture for a specific
number of epochs. In the end the best performing
architecture was used for the models in this paper. The
amount of evaluations per model was defined in Table 2.

2.8 Initial neural network architecture setup

All neural network models were programmed in Python
using the Keras library with a TensorFlow backend and
were trained on a NVIDIA GeForce 960m GPU. The
weights of each layer were initialized by a truncated
normal distribution. The bias from each dense layer was
turned off because each layer was followed up by a batch
normalization layer, apart from the output layer. This
batch normalization layer normalized the weights like
described in chapter 2.5 and was also applied after
recurrent and convolutional layers. Finally, each layer
apart from the output layer was followed up by the Leaky
version of a Rectified Linear Unit (LeakyReLu) activation
function, which is defined as [21]:

ℎ(𝑖𝑖) = max�𝒘𝒘(𝑖𝑖)𝑇𝑇 , 0� = � 𝒘𝒘
(𝑖𝑖)𝑇𝑇𝑥𝑥

0.01𝒘𝒘(𝑖𝑖)𝑇𝑇𝑥𝑥
 𝒘𝒘

(𝑖𝑖)𝑇𝑇𝑥𝑥 > 0
else

 (7)

Where 𝒘𝒘(𝑖𝑖) is the weight vector for the 𝑖𝑖-th hidden node
and 𝑥𝑥 is the node input.

2.9 MVLR

MVLR was the simplest model used in this research.
Despite being a simple model, it has been often used for
the energy forecasting and it is known to make relatively
accurate predictions [22, 8]. The combination of the
performance and simplicity made the evaluation metrics
from MVLR the baseline to compare other models results
with.

𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋0 + 𝑏𝑏2𝑋𝑋1 + 𝑏𝑏3𝑋𝑋2 + ∑ 𝑏𝑏4+𝑖𝑖𝑋𝑋3+𝑖𝑖23

𝑖𝑖=0 +
∑ 𝑏𝑏28+𝑗𝑗𝑋𝑋27+𝑗𝑗 + ∑ 𝑏𝑏34+𝑘𝑘𝑋𝑋33+𝑘𝑘 3

𝑘𝑘=0
6
𝑗𝑗=0 (8)

where

𝑦𝑦 gas use [m3]
𝑏𝑏0 offset [-]
𝑋𝑋0 temperature [°C]
𝑋𝑋1 Wind speed [m/s]
𝑋𝑋2 rain intensity [mm/h]
𝑋𝑋3+𝑖𝑖 hour of the day [-]
𝑋𝑋27+𝑗𝑗 day of the week [-]
𝑋𝑋33+𝑘𝑘 season [-]

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

4

2.10 DNN

The next model used was a feed-forward DNN, this is one
of the basic types of neural networks due to all
connections going in one direction without cycles or
loops. The data from the input layers are passed on to the
next layers of nodes (hidden layers) and based on the
weights, offset and activation function they compute a
value per node, which is passed on to the next layer until
the output node is reached. The value of the output node
will then output a prediction 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . One of the main
benefits of feed-forward DNN is the ability to adapt to
non-linear relationships, in contrast to MVLR.

Figure 3 contains a schematic of the used DNN
architecture. The input shape of this model was a matrix
of shape (features), containing the features of the current
hour, to predict the next target value of shape (target).
Where (features) when using five features would be (5),
e.g. a five-dimensional row vector. Simplified, the
weather information from the current hour was used to
predict the gas consumption of the next hour. Nadam was
used as the optimizer while training this model.

Fig. 3. Where 𝜓𝜓1,𝜓𝜓2,𝜓𝜓3,𝜓𝜓4 represent the number of nodes of
respective layer and are equal to 64, 256, 64, 1024, 8
respectively. The × 2 represents this layer configuration being
repeated two times behind each other.

2.11 LSTM and GRU

LSTM and GRU are based on the Recurrent Neural
Network (RNN), which are often used for natural
language and text processing [23]. LSTM networks are
different from RNNs by the ability to store historical
information which has been processed in its internal
memory units, which can be an advantage when using
time series data [6]. Compared to LSTM, GRU networks
use less parameters per node and thus can be interpreted
as a simplified version of the LSTM model [24].

The input shape of this model was a matrix of shape
(timesteps, features), containing the features of all the
timesteps, to predict the next target value of shape (target).
Timesteps can be interpreted as the model being able to
look back a specific number of hours. For both the LSTM
and GRU models this was set to 120 hours. Simplified and

summarising, the weather information from the past 120
hours was used to predict the gas consumption of the next
hour. The architectures used can be seen in Figure 4.
Adam was used as the optimizer during training of the
LSTM model, whereas Nadam was used for GRU.

Figure 4. Where 𝜓𝜓1, . . . ,𝜓𝜓6 represent the number of nodes of
respective layer. For LSTM these are equal to 8, 0, 16, 128, 8,
16 and for GRU are equal to 16, 8, 4, 0, 8, 8 respectively.
Each layer configuration being repeated 𝛹𝛹𝑖𝑖 times behind each
other is represented by × 𝛹𝛹𝑖𝑖, where 𝑖𝑖 is the layer number. For
LSTM 𝛹𝛹2, … ,𝛹𝛹6 are equal to 0, 1, 3, 2, 1 and for GRU are equal
to 1, 1, 0, 4, 1 respectively.

2.12 CNN

A CNN is a type of deep neural network, most commonly
used for image recognition. Partly due to the development
of autonomous cars, image classification, facial
recognition and more, CNNs are one of the most advanced
neural networks currently being developed in computer
science [25, 26, 27]. Compared to the previously
discussed networks, a requirement to apply CNNs was the
addition of a channel dimension to the feature matrix used
in the RNN model. This changed the matrix from shape
[timesteps, features] to [height, width, channel]. Where
channel is the colour dimension, three for RGB images
and one for grey-scaled images. Timesteps and features
were interpreted as the height and width of the input
image. The architecture used can be seen in Figure 5. The
model was trained with the Nadam optimizer.

2.13 Time distributed CNN + RNN + DNN

The Time Distributed model consisted of a time
distributed CNN layer, being followed up by an LSTM
and finally a DNN. This model combined the power of all
three models. An image with (timesteps, columns) of
(120, 39) was fed into the input layer. This image was then
reshaped to 24 smaller images of (5, 39, 1). Where 1 is the
channel dimension required by the CNN.

Each smaller image was fed to the CNN and the
flattened CNN output was saved in memory. These 5

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

5

flattened outputs made up the sequence that was fed into
the RNN of shape (5, flattened CNN output). From here
on the RNN and DNN were applied as explained in their
respective subchapters. Nadam was used as the optimizer
to train this model.

Figure 5. Where α1 is equal to 5, α2 is equal to 8,
(β1,1 × β1,2) equals (8 x 4) and (β2,1 × β2,2) equals (10
x 8). The final output of the CNN is flatted and fed into a
DNN where ψ1 …ψ3 equals 64, 128, 256 and Ψ1 …Ψ3 are
equal to 2, 2, 1 respectively.

3 Results
Table 2 shows that on one hour resolution, the DNN
model performed best with a 50.1 % MAPE, while LSTM
had the lowest performance with a MAPE of 139 %. In
comparison to MVLR, DNN outperformed MVLR
because of its ability to adapt to non-linearities. DNN

outperformed the other deep neural network models when
comparing it to the other deep neural networks. Due to the
24 hour limitation on the architecture evaluations and
number of epochs, DNN outperformed the other models
thanks to its simplicity. A probable reason for LSTM and
GRU performing worse than expected is the presence of
NaNs in the dataset. When NaNs are removed, missing
timestamps affect to the periodicity of data and therefore
could have an influence on the accuracy of the model.
Furthermore, this could explain why one hot encoded
features such as hour of the day, day of the week and
season leads to performance gains. This is explained by
the LSTM and GRU models adapting to a pattern of a
fixed periodicity between the time steps.

When comparing one day and one week resolutions,
the results indicated that MVLR model outperformed the
other models. MVLR had a MAPE of 20.2 % and 17.0 %
, whereas LSTM was the lowest performing model with a
MAPE of 99.7 % and 95.0 % on a one day and one week
resolution respectively. When down sampling the data
from one hour to lower resolutions, the cumulative error
gets reduced because of the surface area of the errors
getting smaller.

Figure 6 shows that the models tended to forecast
systematically below the real values. Furthermore, during
summer MVLR and DNN outperformed LSTM, GRU,
CNN and Time Distributed. During winter, the difference
between the real and the forecasted values became larger.

Table 2. The values of cross-validation evaluation metrics, amount of architecture evaluations and the amount of

epochs done per model.

Model [-] Resolution MSE [-] MAPE [%] SMAPE [%]
Architecture

evaluations [-]
Time per
epoch [s] Epochs [-]

 Hour 0.62 78.3 193
n.a. n.a. n.a. MVLR Day 99.0 20.2 920

 Week 2.44 ∙ 103 17.0 7.80

 Hour 0.67 50.1 16.6
1.00 ∙ 103 4.00 ∙ 10−6 3.50 ⋅ 104 DNN Day 104 25.1 10.5

 Week 2.96 ∙ 103 20.1 8.70

 Hour 1.00 139 33.9
50.0 4.62 ∙ 10−3 4.00 ∙ 103 LSTM Day 206 99.7 30.1

 Week 7.06 ∙ 103 95.0 31.1

 Hour 1.19 78.6 30.5
100 0.11 4.00 ∙ 103 GRU Day 264 59.8 19.4

 Week 9.38 ∙ 103 45.3 16.9

 Hour 0.84 84.3 28.3
50.0 0.76 8.00 ⋅ 103 CNN Day 115 33.3 13.5

 Week 3.51 ⋅ 103 32.3 13.6

 Hour 0.91 74.0 26.8
100 2.88 ∙ 10−3 4.00 ⋅ 103 Time Dist. Day 184 42.7 16.4

 Week 5.93 ∙ 103 41.5 16.3

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

6

Fig. 6. The forecasted gasUse consumption of the different models on a daily resolution.

4 Conclusion

This paper compares several machine learning algorithms
to forecast the mean gas consumption of 52 dwellings,
representing a block of dwellings on the aggregated level.
Forecasts were done with an hourly resolution by using
the wind speed, rain intensity, temperature, season, hour
of day and day of the week as features. The feature
selection was made by using as few features as possible,
with the objective of keeping the computation power
required as low as possible. The choice of models was
based on previous research studies which were mainly
focused on forecasting the gas and electricity
consumption in commercial and office buildings.
Furthermore, three types of deep learning models were
combined into a single model called Time Distributed.
Time Distributed combined the potential of CNNs and
RNNs, with the goal of getting a better performance
regarding the outcome of the results. More specifically,
this was a time distributed CNN followed up by a LSTM
and DNN.

To validate the applicability of each model, the models
were compared on performance and computational time
required. The gas consumption data of the mean of 52
dwellings was split into a training and test dataset of 70 %
and 30 %, respectively. Predictions were cross validated
on the test set with an hourly resolution. To evaluate the
performance on multiple resolutions, the hourly
predictions were down sampled to one day and one week
resolution by summation.

As seen in Table 2, DNN performed best on an hourly
resolution when looking at the MAPE. On a daily and
weekly resolution, MVLR outperformed the other
models. In all resolutions, LSTM had the lowest
performance.

Further studies should focus on exploring the

possibilities of getting more accurate results and applying
the models on individual dwellings. One way the
evaluation metrics could be improved is by using more
data, e.g. a sampling period of full-year or more. This is
substantiated on the variance between the validation and
train loss. Improving the amount of training data could
help with the recognition of human patterns and
dependency on outside weather conditions. Alongside
this, more features like the electricity consumption can be
used to improve the accuracy of the deep learning models.
However, this results in an increase in computational
power needed, which can be a drawback in certain
situations, e.g. when the hardware used has insufficient
computational power. In the case of this research, as less
features as possible were used. In addition to the
previously stated recommendations, increasing the
amount of architecture evaluations, along with the number
of epochs of the final model architecture, can lead to a
better performance.

The models programmed in Python can be found at GitHub:
https://github.com/deKeijzer/KB-74-OPSCHALER

References

1 Rijksoverheid, Energieagenda: naar een CO₂-arme
energievoorziening, (2016)

2 C. Xu, H. Chen, J. Wang, Y. Guo, Y. Yuan, Building
and Environment, 148, 128 (2019)

3 A. Hernandez Neto, F. A. Sanzovo Fiorelli, Energy
and Buildings, 40-12, 2169 (2008)

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

7

4 J. Woo, A. E. Fenner, A. Asutosh, D. Kim, M.
Razkenari, C.J. Kibert, Proceedings IISE Annual
Conference (2018)

5 S. Bouktif, A. Fiaz, A. Ouni, M.A. Serhani, Energies,
11, 1636 (2018)

6 W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu,Y.
Zhang, Member, IEEE Transactions on Smart Grid,
10-1 (2017)

7 A. Özmen, Y. Yılmaz, G.W. Weber, Energy
Economics, 70-C, 357, (2018)

8 C. Jurado López, Data-driven Predictive Control for
Heating Demand in Buildings, (TU Delft, 2017)

9 N. G. Paterakis, E. Mocanu, M. Gibescu, B. Stappers,
W. van Alst, Proceedings ISGT-Europe, (2017)

10 K. Sabo, R. Scitovski, I. Vazler, M. Zekić-
Sušac,Energy Conversion and Management, 52-3,
1721 (2011)

11 KNMI, Daggegevens KNMI Rotterdam, (2018)
http://projects.knmi.nl/klimatologie/daggegevens/sel
ectie.cgi.

12 M. Brabec, O. Konár, E. Pelikán, M. Malý,
International Journal of Forecasting, 24-4, 659 (2008)

13 J. Szoplik, Energy, 85, 208(2015)

14 D. M. Allen, Technometrics, 13-3, 469 (1971)
15 D. P. Kingma, J.L. Ba, Proceedings ICLR (2015)
16 T. Dozat, Proceedings ICLR (2016)
17 S. Ruder, arXiv:1609.04747 (2017)
18 B. Y. Hsueh, W. Li, I. Wu, arXiv:1806.01593v2

(2018)
19 I. Loshchilov, F. Hutter, arXiv:1608.03983 (2017)
20 T.O. Adeyemi, Research Journal of Mathematics and

Statistics, 3-3, 91 (2011)
21 A.L. Maas, A.Y. Hannun, A.Y. Ng, Proceedings

ICML, 30-1, 3 (2013)
22 V. Bianco, O. Manca, S. Nardini, Energy, 34-9, 1413

(2009)
23 M. Morchid, Neurocomputing, 314, 48 (2018)
24 J. Chung, C. Gulcehre, K. Cho, Y. Bengio,

arXiv:1412.3555 (2014)
25 B.B.Traore, B. Kamsu-Foguem, F. Tangara,

Ecological Informatics, 48, 257 (2018)
26 L. Caltagirone, M. Bellone, L. Svensson, M. Wahde,

Robotics and Autonomous Systems, 111, 125 (2019)
27 X. Zhu, M. Zhu, H. Ren, Cognitive Systems Research,

52, 223 (2018)

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)
201

E3S 111
CLIMA 9

5019 19

8

