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Abstract - Machine learning models have proven to be reliable methods in the forecasting of energy use 
in commercial and office buildings. However, little research has been done on energy forecasting in 
dwellings, mainly due to the difficulty of obtaining household level data while keeping the privacy of 
inhabitants in mind. Gaining insight into the energy consumption in the near future can be helpful in 
balancing the grid and insights in how to reduce the energy consumption can be received. In collaboration 
with OPSCHALER, a measurement campaign on the influence of housing characteristics on energy costs 
and comfort, several machine learning models were compared on forecasting performance and the 
computational time needed. Nine months of data containing the mean gas consumption of 52 dwellings on 
a one hour resolution was used for this research. The first 6 months were used for training, whereas the last 
3 months were used to evaluate the models. The results showed that the Deep Neural Network (DNN) 
performed best with a 50.1 % Mean Absolute Percentage Error (MAPE) on a one hour resolution. When 
comparing daily and weekly resolutions, the Multivariate Linear Regression (MVLR) outperformed other 
models, with a 20.1 % and 17.0 % MAPE, respectively. The models were programmed in Python. 

1 Introduction 
In recent years the European Commission has set 
ambitious CO2 emission reduction targets. As a 
consequence, the Dutch government has been 
increasingly regulating the energy sector. The 
Netherlands aims to be free of natural gas use by the end 
of 2050 [1]. Therefore, the importance of diminishing 
natural gas consumption in dwellings is growing. 

Gaining insight in the prediction of gas consumption 
in dwellings is critical to meet the Dutch government 
requirements. However, a vast number of research has 
been conducted towards energy consumption prediction 
in commercial and office buildings [2, 3, 4, 5, 6]. Thus far, 
little research has been conducted to predict gas 
consumption on single household level due to the 
difficulty of obtaining the energy use data due to data 
privacy [7]. From commercial and office building energy 
forecasting research, Alberto Hernandez Neto [3] 
concluded that deep neural networks outperform physical 
simulation models by 3-6 %. Furthermore, according to 
Jurado López [8], weather conditions have the highest 
correlation to gas use. It is worth noting that using 
multiple weather parameters as features in prediction 
models improve the accuracy of the model [3]. This paper 
focusses on comparing the accuracy of widely discussed 

machine learning algorithms on an hourly, daily and 
weekly resolution and ultimately, creating a model that 
can predict the natural gas use of dwellings as accurate as 
possible. Different models were made and their results 
were evaluated. This was done with a dataset containing 
nine months of the mean hourly gas consumption data 
from a total of 52 dwellings in The Netherlands, together 
with the mean hourly weather data of a nearby weather 
station. In this paper the models used as less features as 
possible, to minimize the computation power required, 
which enables the models to be able to run on computers 
with limited computer power in dwellings. 

2 Methodology 

This paper focusses on the evaluation of different machine 
learning models. Specifically the Long Short-Term 
Memory (LSTM), Gated Recurrent Unit (GRU) and 
Convolutional Neural Network (CNN). These deep 
learning algorithms have shown the best potential for this 
type of prediction [1, 5, 6, 9, 4]. In most of the previously 
listed references, the models were based on electricity 
prediction of commercial and office buildings. These 
algorithms are called complex models in literature. The 
accuracy of the models is dependent on the environment 
of the research and chosen features. Consequently, the 
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models need to be verified on residential households 
because this environment is different from commercial 
buildings. Commercial buildings usually have a fixed 
energy use time schedule, while dwellings have more 
variation in its energy use pattern [8].  

In addition to the complex models, Multivariate 
Linear Regression (MVLR) and Deep Neural Network 
(DNN) have shown promising results in comparison to 
their simplicity [5, 10]. These models are called simple 
models in literature. The different models are discussed in 
their respective subchapters.  

In this section the way the data was collected and 
processed is discussed. Insights are given on what 
machine learning methods were applied and which 
metrics were used for the evaluation of the models. The 
same metrics were used to evaluate the different machine 
learning models. Furthermore, this section clarifies the 
commonly used environmental settings for all the models. 
All the models were programmed in Python.  

2.1 Data collecting and processing 

The data used in this research was gathered by the 
OPSCHALER project from 2017-02 to 2017-12. It 
contained data concerning gas and electricity 
consumption. This information was obtained from the 
smart meters of 52 different dwellings, everything was 
anonymized and therefore the dwelling locations were 
unknown. The data acquisition period from the dwellings 
varied from one to nine months. The electricity data was 
sampled with a ten second resolution, whereas the gas 
consumption was sampled with a one hour resolution. 
These sampling periods are visualized in Figure 1. 

Fig. 1. Distribution of the data acquisition from all different 
dwellings. The number in each grey selected area is the number 
of dwellings of which data was gathered from during this period.  

Due to an uneven and scarce distribution of the data, 
the mean of all dwellings at each timestamp was taken 
along with its standard deviation. This represented the 

mean gas use on the aggregated level, e.g. a block of 52 
dwellings.  

In addition to this, weather information obtained from 
the Royal Netherlands Meteorological Institute (KNMI) 
station in Rotterdam was used. This was the weather 
station most nearby to all dwellings. However, the 
distance to the most distant dwelling was 103 km. The 
weather information was sampled with a 15 minute 
resolution. 

One of the goals of this research was to use as less 
features as possible, therefore a selection of the used 
parameters was made. Parameters referred to all the 
available variables from the original dataset, whereas 
features referred to the variables that were selected to 
forecast the target ‘gasUse’. According to [12, 13] air 
temperature and calendar related features were the most 
relevant to use when predicting gas consumption in the 
residential sector. In this research the target was called 
‘gasUse’, being this the gas consumption in an interval of 
an hour and measured in [m3]. As a baseline, the 
parameter which had the highest Pearson correlation 
coefficient 𝑃𝑃 with ‘gasUse’ was selected as a feature. In 
this case this parameter was the temperature 𝑇𝑇. The other 
parameters that had a Pearson correlation coefficient with 
the temperature that suffixes |𝑃𝑃| < 0.1, were selected. 
Setting this threshold to |𝑃𝑃| < 0.1 minimized the 
influence of the features on each other. All the used 
parameters are visible in Table 1.  

Table 1. Features extracted from the available parameters. 
*Values have been calculated. 

Features Unit Description 

FF m/s Wind speed at 10 m 

RG mm/h Rain intensity 

T °C Temperature at 1,5 m (1 
minute mean) 

hour of day - Hour of day at given the 
timestamp*. 

day of week - Day of week at given the 
timestamp*. 

season - Season of the year at given 
the timestamp*. 

 
The weather data was sampled with a 15 minutes 

resolution, whereas the ‘gasUse’ was sampled with a one 
hour resolution. To combine these two datasets into one, 
the weather data was down sampled to one hour by mean 
and combined with the ‘gasUse’. Not a Number (NaN) 
values appeared in the intervals of time where the data 
acquisition system stopped gathering information, this 
was the case for the features and target. All NaNs were 
removed from the dataset. 
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Fig. 2. A visualization of the train, validation and test dataset distribution on a daily resolution.

2.2 Train, test & validation dataset 

All models used the same train, validation and test dataset. 
A visualisation of the distribution of the train, validation 
and test dataset is shown in Figure 2. The first 70 % of the 
dataset was used as the train set. The test set containing 
the remaining 30 % was used for cross-validation of each 
model. During training of the neural networks, the last 20 
% of the train set was taken as the validation set.  

2.3 Model evaluation 

Neural networks use an optimizer to minimize the loss 
function. This can be interpreted as the least squares 
method for linear regression which minimizes the squared 
residuals. The loss function used for the neural network 
models in this paper was the Mean Squared Error (MSE) 
and is defined as:  

MSE = 1
𝑛𝑛
∑ �𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2𝑛𝑛
𝑖𝑖=1 .  (1) 

Where 𝑌𝑌𝚤𝚤�  is the 𝑖𝑖-th ground truth value, 𝑌𝑌𝑖𝑖 is the 𝑖𝑖-th 
predicted value and 𝑛𝑛 is the total number of samples. 

Two positive properties of the MSE is that in general 
it is relatively computationally inexpensive and is 
sensitive to outliers because the difference between 𝑌𝑌𝑖𝑖 and 
𝑌𝑌𝚤𝚤�  is squared. This sensitivity to outliers had a positive 
influence on the used dataset because the outliers in the 
gas consumption represent valid data points, e.g. they 
were not corrupt data due to malfunctioning of the 
measurement devices. 

Two other available loss functions are the Mean 
Absolute Percentage (MAPE) and the Symmetric Mean 
Absolute Percentage Error (SMAPE). MSE was chosen 
over MAPE and SMAPE because they are less sensitive 
for outliers. Where MAPE is defined as: 

MAPE = 100%
𝑛𝑛

∑ |𝑌𝑌𝚤𝚤�−𝑌𝑌𝑖𝑖|
|𝑌𝑌𝑖𝑖|

𝑛𝑛
𝑖𝑖=1    (2) 

, and SMAPE as: 

SMAPE =  100%
2𝑛𝑛

∑ |𝑌𝑌𝑖𝑖−𝑌𝑌𝚤𝚤� |
|𝑌𝑌𝚤𝚤� |+|𝑌𝑌𝚤𝚤� |

.𝑛𝑛
𝑖𝑖=1   (3) 

Notice how the MSE is scale dependent whereas 
MAPE and SMAPE are in percentages. The MAPE and 
SMAPE were used as evaluation metrics, together with 
MSE to determine the performance of each model. 

2.4 Optimizers and learning rate scheduler 

Like stated in chapter 2.3, neural networks use an 
optimizer to minimize the loss function. In this research 
Adam [15] and Nadam [16] were used for the models. The 
used optimizer is specified per model in their respective 
subchapters. The main difference between Adam and 
Nadam is that Adam is essentially RMSprop with 
momentum whereas Nadam is Adam RMSprop with 
Nesterov momentum. This is simplified by imagining a 
curved plane in ℝ3. When trying to get to the lowest point 
of this plane, Nadam will jump over hills more quickly 
than Adam would by default. Adam and Nadam were 
chosen instead of the commonly used Stochastic Gradient 
Descent (SGD) method, because they converge quicker 
than SGD does [17]. 

To improve the rate of convergence of the loss 
function, a cosine annealing learning rate scheduler with 
periodic restarts was applied to the optimizer. Together 
with improving the rate of convergence, this also gives the 
ability to find a lower and wider minimum [18].  

Regularly, without the learning rate scheduler, the 
learning rate 𝜂𝜂𝑡𝑡 is set to a fixed value for each batch within 
the total amount of epochs 𝑇𝑇𝑖𝑖 . Whereas with the learning 
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rate scheduler, the learning rate is changed per batch 
within the 𝑖𝑖-th run as follows [19]: 

   𝜂𝜂𝑡𝑡 = 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 + 1
2

(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 − 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖 )(1 + cos �𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐
𝑇𝑇𝑖𝑖
𝜋𝜋�.  (4) 

Where 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  and 𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖  are the ranges for the learning rate 
and 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐  are the number of epochs since the last restart. 

2.5 Feature and batch normalization 

The features 𝑋𝑋 were standardized by removing the mean 
and scaling to unit variance using the ‘StandardScaler’ 
function from scikit-learn. This function scaled all feature 
samples by removing the mean and scaling to unit 
variance. This prevents one or more features dominating 
the others. The models also converge less quick and had a 
likelihood to have a lower accuracy when the features are 
not scaled. Each feature from the features train dataset 
𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 were scaled independently. The standard score 𝑍𝑍 of 
the feature sample was calculated as [20]: 

𝑍𝑍 = 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡−𝑢𝑢
𝑠𝑠

    (5) 

Where 𝑢𝑢 is the mean value of the sample and 𝑠𝑠 is the 
standard deviation from the sample. The standard score 
was stored and used to also transform the features 𝑋𝑋𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 
from the test dataset. The standard score was not being 
recalculated for the test set. This prevents having data 
leakage from the distribution of the feature samples from 
the test- to the train-set.  

2.6 One hot encoding 

The hour of the day, day of the week and current season 
values were extracted as features from the timestamp of 
each row in the dataset. Where hour of day ranged from 0 
to 23, day of the week from 0 to 6 and season from 1 to 4. 
These features were one hot encoded. This transformed 
the data so each value of the feature had a separate column 
in the dataset, as for example this matrix: 

�
0
1
2
� → �

1 0 0
0 1 0
0 0 1

�   (6) 

Where the day of the week is represented as a number in 
the column vector. After transforming this column vector 
to the 3 × 3 matrix, each column represents a day of the 
week. With 1 representing that at given row is currently 
that day of the week. Where column one represented that 
row being on a Monday, column two being on a Tuesday 
and column three being on a Wednesday. Representing 
the features extracted from the timestamp in this way 
allows the models to assign different weights to for 
example 07:00 AM on a Monday and 09:00 AM on a 
Saturday.  

 

2.7 Architecture evaluations 

Hyperas was used to evaluate different architectures of 
each neural network model. A commonly used 
distribution of nodes and layers was set as the available 
parameter space. Hyperas was set to evaluate a fixed 
amount of possibilities from the parameter space. The 
amount of evaluations was chosen so the total evaluation 
time per model took 24 hours. During each evaluation 
Hyperas trained a different architecture for a specific 
number of epochs. In the end the best performing 
architecture was used for the models in this paper. The 
amount of evaluations per model was defined in Table 2.  

2.8 Initial neural network architecture setup 

All neural network models were programmed in Python 
using the Keras library with a TensorFlow backend and 
were trained on a NVIDIA GeForce 960m GPU. The 
weights of each layer were initialized by a truncated 
normal distribution. The bias from each dense layer was 
turned off because each layer was followed up by a batch 
normalization layer, apart from the output layer. This 
batch normalization layer normalized the weights like 
described in chapter 2.5 and was also applied after 
recurrent and convolutional layers. Finally, each layer 
apart from the output layer was followed up by the Leaky 
version of a Rectified Linear Unit (LeakyReLu) activation 
function, which is defined as [21]: 

ℎ(𝑖𝑖) = max�𝒘𝒘(𝑖𝑖)𝑇𝑇 , 0� = � 𝒘𝒘
(𝑖𝑖)𝑇𝑇𝑥𝑥    

0.01𝒘𝒘(𝑖𝑖)𝑇𝑇𝑥𝑥
   𝒘𝒘

(𝑖𝑖)𝑇𝑇𝑥𝑥 > 0
else

  (7) 

Where 𝒘𝒘(𝑖𝑖) is the weight vector for the 𝑖𝑖-th hidden node 
and 𝑥𝑥 is the node input.  

2.9 MVLR 

MVLR was the simplest model used in this research. 
Despite being a simple model, it has been often used for 
the energy forecasting and it is known to make relatively 
accurate predictions [22, 8]. The combination of the 
performance and simplicity made the evaluation metrics 
from MVLR the baseline to compare other models results 
with. 
 
𝑦𝑦 = 𝑏𝑏0 + 𝑏𝑏1𝑋𝑋0 + 𝑏𝑏2𝑋𝑋1 +  𝑏𝑏3𝑋𝑋2 + ∑ 𝑏𝑏4+𝑖𝑖𝑋𝑋3+𝑖𝑖23

𝑖𝑖=0 +
∑ 𝑏𝑏28+𝑗𝑗𝑋𝑋27+𝑗𝑗 + ∑ 𝑏𝑏34+𝑘𝑘𝑋𝑋33+𝑘𝑘 3

𝑘𝑘=0
6
𝑗𝑗=0    (8) 

  
where 

 

 

 

 

𝑦𝑦 gas use [m3] 
𝑏𝑏0 offset [-] 
𝑋𝑋0 temperature [°C] 
𝑋𝑋1 Wind speed [m/s] 
𝑋𝑋2 rain intensity [mm/h] 
𝑋𝑋3+𝑖𝑖 hour of the day [-] 
𝑋𝑋27+𝑗𝑗 day of the week [-] 
𝑋𝑋33+𝑘𝑘 season [-] 
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2.10 DNN 

The next model used was a feed-forward DNN, this is one 
of the basic types of neural networks due to all 
connections going in one direction without cycles or 
loops. The data from the input layers are passed on to the 
next layers of nodes (hidden layers) and based on the 
weights, offset and activation function they compute a 
value per node, which is passed on to the next layer until 
the output node is reached. The value of the output node 
will then output a prediction 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 . One of the main 
benefits of feed-forward DNN is the ability to adapt to 
non-linear relationships, in contrast to MVLR.  

Figure 3 contains a schematic of the used DNN 
architecture. The input shape of this model was a matrix 
of shape (features), containing the features of the current 
hour, to predict the next target value of shape (target). 
Where (features) when using five features would be (5), 
e.g. a five-dimensional row vector. Simplified, the 
weather information from the current hour was used to 
predict the gas consumption of the next hour. Nadam was 
used as the optimizer while training this model. 

Fig. 3. Where 𝜓𝜓1,𝜓𝜓2,𝜓𝜓3,𝜓𝜓4 represent the number of nodes of 
respective layer and are equal to 64, 256, 64, 1024, 8 
respectively. The × 2 represents this layer configuration being 
repeated two times behind each other. 

2.11 LSTM and GRU 

LSTM and GRU are based on the Recurrent Neural 
Network (RNN), which are often used for natural 
language and text processing [23]. LSTM networks are 
different from RNNs by the ability to store historical 
information which has been processed in its internal 
memory units, which can be an advantage when using 
time series data [6]. Compared to LSTM, GRU networks 
use less parameters per node and thus can be interpreted 
as a simplified version of the LSTM model [24].  

The input shape of this model was a matrix of shape 
(timesteps, features), containing the features of all the 
timesteps, to predict the next target value of shape (target). 
Timesteps can be interpreted as the model being able to 
look back a specific number of hours. For both the LSTM 
and GRU models this was set to 120 hours. Simplified and 

summarising, the weather information from the past 120 
hours was used to predict the gas consumption of the next 
hour. The architectures used can be seen in Figure 4. 
Adam was used as the optimizer during training of the 
LSTM model, whereas Nadam was used for GRU. 

Figure 4. Where 𝜓𝜓1, . . . ,𝜓𝜓6 represent the number of nodes of 
respective layer. For LSTM these are equal to 8, 0, 16, 128, 8, 
16 and for GRU are equal to 16, 8, 4, 0, 8, 8 respectively. 
Each layer configuration being repeated 𝛹𝛹𝑖𝑖 times behind each 
other is represented by × 𝛹𝛹𝑖𝑖, where 𝑖𝑖 is the layer number. For 
LSTM 𝛹𝛹2, … ,𝛹𝛹6 are equal to 0, 1, 3, 2, 1 and for GRU are equal 
to 1, 1, 0, 4, 1 respectively.  

2.12 CNN 

A CNN is a type of deep neural network, most commonly 
used for image recognition. Partly due to the development 
of autonomous cars, image classification, facial 
recognition and more, CNNs are one of the most advanced 
neural networks currently being developed in computer 
science [25, 26, 27]. Compared to the previously 
discussed networks, a requirement to apply CNNs was the 
addition of a channel dimension to the feature matrix used 
in the RNN model. This changed the matrix from shape 
[timesteps, features] to [height, width, channel]. Where 
channel is the colour dimension, three for RGB images 
and one for grey-scaled images. Timesteps and features 
were interpreted as the height and width of the input 
image. The architecture used can be seen in Figure 5. The 
model was trained with the Nadam optimizer. 

2.13 Time distributed CNN + RNN + DNN 

The Time Distributed model consisted of a time 
distributed CNN layer, being followed up by an LSTM 
and finally a DNN. This model combined the power of all 
three models. An image with (timesteps, columns) of 
(120, 39) was fed into the input layer. This image was then 
reshaped to 24 smaller images of (5, 39, 1). Where 1 is the 
channel dimension required by the CNN. 

Each smaller image was fed to the CNN and the 
flattened CNN output was saved in memory. These 5 
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flattened outputs made up the sequence that was fed into 
the RNN of shape (5, flattened CNN output). From here 
on the RNN and DNN were applied as explained in their 
respective subchapters. Nadam was used as the optimizer 
to train this model. 

Figure 5. Where α1 is equal to 5, α2 is equal to 8, 
(β1,1  ×  β1,2) equals (8 x 4) and (β2,1  ×  β2,2) equals (10 
x 8). The final output of the CNN is flatted and fed into a 
DNN where ψ1 …ψ3 equals 64, 128, 256 and Ψ1 …Ψ3 are 
equal to 2, 2, 1 respectively. 

3 Results  
Table 2 shows that on one hour resolution, the DNN 
model performed best with a 50.1 % MAPE, while LSTM 
had the lowest performance with a MAPE of 139 %. In 
comparison to MVLR, DNN outperformed MVLR 
because of its ability to adapt to non-linearities. DNN 

outperformed the other deep neural network models when 
comparing it to the other deep neural networks. Due to the 
24 hour limitation on the architecture evaluations and 
number of epochs, DNN outperformed the other models 
thanks to its simplicity. A probable reason for LSTM and 
GRU performing worse than expected is the presence of 
NaNs in the dataset. When NaNs are removed, missing 
timestamps affect to the periodicity of data and therefore 
could have an influence on the accuracy of the model. 
Furthermore, this could explain why one hot encoded 
features such as hour of the day, day of the week and 
season leads to performance gains. This is explained by 
the LSTM and GRU models adapting to a pattern of a 
fixed periodicity between the time steps. 

When comparing one day and one week resolutions, 
the results indicated that MVLR model outperformed the 
other models. MVLR had a MAPE of 20.2 % and 17.0 % 
, whereas LSTM was the lowest performing model with a 
MAPE of 99.7 % and 95.0 % on a one day and one week 
resolution respectively. When down sampling the data 
from one hour to lower resolutions, the cumulative error 
gets reduced because of the surface area of the errors 
getting smaller. 

Figure 6 shows that the models tended to forecast 
systematically below the real values. Furthermore, during 
summer MVLR and DNN outperformed LSTM, GRU, 
CNN and Time Distributed. During winter, the difference 
between the real and the forecasted values became larger. 

 
Table 2. The values of cross-validation evaluation metrics, amount of architecture evaluations and the amount of 

epochs done per model. 

Model [-] Resolution MSE [-] MAPE [%] SMAPE [%] 
Architecture 

evaluations [-] 
Time per 
epoch [s] Epochs [-] 

 Hour 0.62 78.3 193 
n.a. n.a. n.a. MVLR Day 99.0 20.2 920 

 Week 2.44 ∙ 103 17.0 7.80 

 Hour 0.67 50.1 16.6 
1.00 ∙ 103 4.00 ∙ 10−6 3.50 ⋅ 104 DNN Day 104 25.1 10.5 

 Week 2.96 ∙ 103 20.1 8.70 

 Hour 1.00 139 33.9 
50.0 4.62 ∙ 10−3 4.00 ∙ 103 LSTM Day 206 99.7 30.1 

 Week 7.06 ∙ 103 95.0 31.1 

 Hour 1.19 78.6 30.5 
100 0.11 4.00 ∙ 103 GRU Day 264 59.8 19.4 

 Week 9.38 ∙ 103 45.3 16.9 

 Hour 0.84 84.3 28.3 
50.0 0.76 8.00 ⋅ 103 CNN Day 115 33.3 13.5 

 Week 3.51 ⋅ 103 32.3 13.6 

 Hour 0.91 74.0 26.8 
100 2.88 ∙ 10−3 4.00 ⋅ 103 Time Dist. Day 184 42.7 16.4 

  Week  5.93 ∙ 103  41.5  16.3 
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Fig. 6. The forecasted gasUse consumption of the different models on a daily resolution. 

4 Conclusion 

This paper compares several machine learning algorithms 
to forecast the mean gas consumption of 52 dwellings, 
representing a block of dwellings on the aggregated level. 
Forecasts were done with an hourly resolution by using 
the wind speed, rain intensity, temperature, season, hour 
of day and day of the week as features. The feature 
selection was made by using as few features as possible, 
with the objective of keeping the computation power 
required as low as possible. The choice of models was 
based on previous research studies which were mainly 
focused on forecasting the gas and electricity 
consumption in commercial and office buildings. 
Furthermore, three types of deep learning models were 
combined into a single model called Time Distributed. 
Time Distributed combined the potential of CNNs and 
RNNs, with the goal of getting a better performance 
regarding the outcome of the results. More specifically, 
this was a time distributed CNN followed up by a LSTM 
and DNN. 

To validate the applicability of each model, the models 
were compared on performance and computational time 
required. The gas consumption data of the mean of 52 
dwellings was split into a training and test dataset of 70 % 
and 30 %, respectively. Predictions were cross validated 
on the test set with an hourly resolution. To evaluate the 
performance on multiple resolutions, the hourly 
predictions were down sampled to one day and one week 
resolution by summation. 

As seen in Table 2, DNN performed best on an hourly 
resolution when looking at the MAPE. On a daily and 
weekly resolution, MVLR outperformed the other 
models. In all resolutions, LSTM had the lowest 
performance. 

 
Further studies should focus on exploring the 

possibilities of getting more accurate results and applying 
the models on individual dwellings. One way the 
evaluation metrics could be improved is by using more 
data, e.g. a sampling period of full-year or more. This is 
substantiated on the variance between the validation and 
train loss. Improving the amount of training data could 
help with the recognition of human patterns and 
dependency on outside weather conditions. Alongside 
this, more features like the electricity consumption can be 
used to improve the accuracy of the deep learning models. 
However, this results in an increase in computational 
power needed, which can be a drawback in certain 
situations, e.g. when the hardware used has insufficient 
computational power. In the case of this research, as less 
features as possible were used. In addition to the 
previously stated recommendations, increasing the 
amount of architecture evaluations, along with the number 
of epochs of the final model architecture, can lead to a 
better performance.  
 
The models programmed in Python can be found at GitHub: 
https://github.com/deKeijzer/KB-74-OPSCHALER 
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