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Abstract. Building design, construction, and operation has been suggested to benefit from comprehensive 

and well-formed repository of associated information. Building Information Modeling (BIM) has pursued the 

supposition that repositories could facilitate seamless exchange of information amongst the multiple 

stakeholders in the building delivery process. Related research and development efforts have primarily 

focused on representation of buildings' geometry and specifications of their constituent structural and 

constructional components. More recently, representations of building environmental control equipment and 

systems have begun to become incorporated in BIM applications. Ongoing work in this area has likewise 

targeted development of common schemes to incorporate, in BIM, buildings' sensory networks and elements 

that serve, for instance, the operation of HVAC (Heating, Ventilation, and Air-Conditioning) systems. To 

achieve these targets, comprehensive and robust ontologies of building monitoring data and building 

performance indicators are essential. In the present contribution, we first present a recently introduced original 

proposal for such ontologies, covering data regarding dynamic data relevant to state, operation, and 

performance of buildings. This ontology was developed based on an extensive review of building monitoring 

data and performance indicator catalogues in thermal, air quality, visual, and acoustical domains. The 

ontology's structural core basically involves a systematic specification of the generic attributes of building 

performance variables. We then illustrate various benefits and applications of this ontology. It is shown to 

support data quality check, data visualization, building operation optimization, and preventive building 

systems maintenance. It can also add to the clarity of building performance requirements specifications, 

advance the understanding of building performance principles in educational and training settings, and 

provide and early integration of buildings' operational attributes in BIM applications. 

1 Introduction 

Recent trends in building design and construction 

processes display increased efforts in the AEC 

community (architecture, engineering and construction) 

to deploy building information modeling (BIM), 

especially in large-scale projects. This is also reflected in 

the increasingly prescribed use of BIM in publicly 

procured construction projects. This is suggested to be 

beneficial to the stakeholders involved by supporting 

seamless communication and collaboration toward cost 

reduction and design errors minimization. 

BIM is all about data. Data organization and structure 

that can be commonly recognized and shared by digital 

tools is the key to successful information exchange 

amongst pertinent professionals. In BIM, data 

organization is enabled (conveyed) by utilization of 

standardized data models and ontologies. An example of 

a well-known data model is Industry Foundation Classes 

(IFC) [1]. It is used for representation of construction 

(walls, roofs, windows, etc.) and facility management 

(maintenance details, installation dates, etc.) data. 

Whereas IFC may represent an instance of a well-

established, continuously evolving format for primarily 

static data (e.g., building components), there is a paucity 

of data models and ontologies for representation of 

dynamic data (e.g., monitored states). The latter, would 

include, in the context of built environment, measurement 

data acquired from various sensor networks as well as 

simulated data generated via computational building 

performance assessment tools. A performance assessment 

of both building designs and existing buildings rely on 

monitored or computed data concerning buildings' 

behavior toward derivation of the values of key building 

performance indicators (BPIs). Both primary 

performance data (i.e., sensor data or simulated data) and 

high-level building performance indicator values come in 

various forms, degrees of resolution, and application 

domains. Efficient and effective processing of such 

information could greatly benefit from a well-structured 

ontology that would cover the multiple levels of 

complexity involved. Such ontology is essential for 

scientific community to facilitate data analysis towards 

building design, operation, and retrofit optimization 

throughout the buildings' life cycle. It would also provide 

a solid basis for development of visualization engines that 

could further support optimization or BMS (Building 
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Management Systems) applications and provide deeper 

insight into the data.  

Multiple efforts have targeted the development of such 

ontologies. A previous effort in the building performance 

assessment domain involved the definition of an ontology 

based on an extensive review of existing building 

performance indicators in thermal, visual, acoustical and 

air quality domains [2, 3]. Another effort proposed an 

ontology for building monitoring data addressing the 

diversity and complexity of monitored data streams [4, 5, 

6].  

The following section of the paper provides an 

overview of these ontologies. Moreover, it includes a 

universal schema that captures the common 

characteristics of building monitoring and performance 

data.  

2 An ontology for dynamic building data 

2.1. Ontology for monitored data  

To provide a robust classification framework for 

representation of data from building monitoring systems, 

a number of basic data categories must be identified. 

Based on the aforementioned efforts in the area of 

building monitoring, six data categories where identified. 

These include: occupants, indoor environmental 

conditions, external environmental conditions, control 

systems and devices, equipment, and energy flows. Table 

1 provides an overview of five of these categories together 

with examples of subcategories and monitored variables. 

Table 1. General schema for building performance data 

(modified based on [6]) 

Category of 

monitored 

data 

Subcategory of 

monitored data 

Examples of 

monitored 

variables 

Inhabitants 

Position Movement 

Control action Window contact  

Attributes Clo-value 

Attitudes Thermal sensation 

Indoor 

conditions 

Hygro-thermal Air temperature 

Acoustical Sound level 

Air quality CO2 concentration 

Visual Task illuminance 

Control 

systems/ 

devices 

Heating/cooling Thermostat setting 

Ventilation Air flow rate 

Lighting Dimming setting 

Shading Blind position 

Equipment 
Office Operational state 

Household Operational state 

Energy 

Heating/cooling Fuel consumption 

Ventilation Power usage 

Lighting Power usage 

Equipment Power usage 

2.2 Ontology for building performance indicators  

A comprehensive review of all building performance 

indicators would be a difficult task, as they are constantly 

extended and modified. A recent effort [7] reviewed a 

large number of performance indicators in following 

domains: energy efficiency, hygro‐thermal performance, 

thermal comfort, indoor air quality, indoor visual 

environment, and indoor acoustical environment. The 

indicators span from ones that capture strictly technical 

systems performance to others that describe building's 

"habitability" (i.e., indoor environmental quality)  

[3, 8]. 

Figure 1 presents an overview of indicator domains 

(main categories) and examples of their subsets together 

with illustrative indicator instances.  

2.3 Universal schema 

To capture the common characteristics of data streams 

(feeding in the ontology) generated by both physical 

(meters, sensors) and virtual (simulation tools, numeric 

models) data sources, we proposed a comprehensive 

Table 2. General schema for building performance indicators 
(modified based on [3]) 

Category 

Sub-category 

Variable 

Name 

Value 

Type 

Magnitude (size) 

Direction (vector) 

Unit 

Spatial domain 

Point 

Plane 

Volume 

Topological ref. 

Aggregation 

method 

Grid size 

 

Temporal 

domain 

Time stamp 

Duration 

Time step 

Aggregation 

method 

Frequency 

domain 

Range 

Band (filter) 

Weighting 

Aggregation 

method 

Agent ID   

 Notes 

Data sources 
Category 

ID/name 

Derivation 

method 

Details (formula, 

link, etc.) 
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Fig. 1. An overview map of five building performance domains with subcategories and illustrative performance indicator examples 

[3] 
 

ontological schema (see Table 2). This schema can be 

shown to fulfill requirements of both monitored data and 

BPI values. Each variable falls under a specific category 

and subcategory. Given a specific time and space, each 

variable can assume a specific value. Each value can have 

a number of assigned properties and attributes. The 

variable's type suggests, primarily, if it is quantitative, or 

qualitative. Quantitative data should be supplemented 

with the magnitude, in case of vectors also direction and 

a relevant unit for valid processing and interpretation. 

Depending on the category of the variable, a number 

of additional properties can be specified in three domains. 

Spatial domain properties allow to associate a variable to 

a specific point in Cartesian coordination system or to 

topologically specified location (e.g., room tag). 

Temporal domain properties can be expressed in the 

schema via a time stamp (e.g. for a sensor reading). A time 

step denotes recurrent temporal intervals to which 

measured or simulation data could be assigned (e.g., 

hourly heating loads).  Duration denotes the overall time 

frame to which a given variable value corresponds (e.g., 

annual cooling load). As such time step and grid size can 

specify the discretization resolution of pertinent temporal 

and spatial continua. The Frequency domain attributes are 

relevant to measured or simulated values that display 

wave characteristics (e.g., light/radiation, sound). 

2.4 Application of the proposed schema 

To illustrate the working and potential of the ontology, 

Table 3 includes three exemplary variables from different 

domains. Thereby, categories, subcategories, and variable 

attributes are captured. 

3 Implementation and testing 

3.1 Ontologically consistent data storage 

One of the most important aspects regarding the actual 

application potential of the proposed ontology concerns 

the selection of a proper data container. Thereby, large 

sets of semantically enriched data would have to be 

structured so as to conform to the proposed schema. 

We selected HDF (Hierarchical Data Format) file 

format, specifically its most recent version HDF5 [9] as 

the container for ontologically structured data. This 

format is suggested to be suitable for storing and 

managing large and complex data sets. The following 

points are quoted from developers' summary of the format 

"…Advantages of HDF5: 

• Versatile data model that can represent very complex, 

heterogeneous data objects and a wide variety of 

metadata through an unlimited variety of datatypes 

• Ready for high speed raw data acquisition 

• Portable and extensible with no limits on file size, 

allowing applications to evolve in their use of HDF5 

• Self-describing, requiring no outside information for 

applications to interpret the structure and contents of a 

file… 

• Long-term data archiving solution" [10]   
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Table 3. Illustrative representation of three exemplary performance variables (monitored data, performance indicators) following the 

structure of the proposed ontology (modified based on [3]) 

Category Energy and resources 
Thermal  

performance 
Occupants 

Subcategory 
Energy performance  

indicator 

Environmental 

indices 
Control action 

V
ar

ia
b

le
 

Name Heating Load Air flow velocity Window contact 

Value 

Type Quantitative Quantitative Quantitative 

Magnitude  50 0.25 0 

Direction  - [0 0 -1] - 

Unit kWh.m‐2 m.s-1 - 

Spatial  

domain 

Point - 1.50 , 2.00 , 1.10 1.00 , 0.00, 1.20 

Plane - - - 

Volume Building A - - 

Topological 

reference  
Building A Room R_1 Room R_1 

Aggregation 

method 
- - - 

Grid size - 0.20 m - 

Temporal 

domain 

Time stamp - 
08.05.2018 

10:30:00 

08.05.2018 

09:20:00 

Duration Annual  - - 

Time step 1 hour   - 5 min 

Aggregation 

method 

Arithmetic  

summation 
- - 

Frequency 

domain 

Range - - - 

Band - - - 

Weighting - - - 

Aggregation 

method 
- - - 

Agent ID  - - Occupant_1 

Notes 

Data 

source 

Category Simulation Simulation Sensor 

ID/name Sim_20180729_1 Sim_20180823_3 Con_15 

Derivation 

Method 
  https://www.iso.org/...  
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3.2 Examination of the robustness of the 
ontology  

We have been testing the robustness of the proposed 

ontology and implementation in HDF5 file format. 

Testing involves high resolution measurement data 

gathered from multiple sensors installed at the office 

space in a university building (TU Wien) in Vienna, 

Austria. Table 4 gives an overview of the observed 

variables selected for testing. The selected dataset 

includes 116 unique variables observed over a period of 3 

years resulting in about 16 millions of single data points. 

As an initial step, data had to undergo migration from 

a multi-table database format to the ontology's tree-

structure schema. This operation required detailed review 

of the observed variables concerning missing attributes. A 

workflow was developed to assign supplementary 

information to monitored variables and to store the 

enriched data according to the developed schema in a 

single HDF5 file. Any application of the proposed 

ontology, whether it is data quality check, optimization, 

visualization, or analysis relies on accurate data 

extraction. The structure of the proposed ontology enables 

efficient and intuitive data queries to browse, locate, or 

lookup data of interest. 

A series of algorithms were created in the Python [11] 

environment to test querying efficiency of ontologically 

structured data. The main focus of the test was to extract 

target variables that fulfill a specified combination of 

spatial, temporal, and categorical criteria. After successful 

extraction, the data of interest was further processed in 

terms of descriptive statistics and data visualization (e.g., 

box plots, histograms, line plots). 

To illustrate this process, consider the example of a 

test query to find, extract, and process all available 

variables from the "Indoor conditions" category. Toward 

this end, the implemented ontological structure (see Table 

2) facilitates the search and extraction process in a highly 

efficient manner. For instance, spatial (e.g., X[3-5m]; 

Y[0-2m]; Z[0-3m]) and temporal (e.g., March to June 

2016) filters can rapidly narrow down the search space 

and return – almost instantaneously – the results.  

 
Table 4. Variables selected for initial ontology testing  

 

Category Subcategory 
Monitored 

variable 

Indoor conditions 

Hygro-thermal 

conditions 

Temperature 

Relative humidity 

Visual 
Overhead 

illuminance 

Indoor air quality CO2 concentration 

Equipment Electrical 
Power usage 

Energy usage 

Control system 

and devices 

Heating/Cooling 

system 

Radiator surface 

temperature 

Occupants 
Position Presence 

Control actions Window contact  

As the query result are already well-formed and 

clearly indexed, they can be conveniently subjected to 

further processing in different applications (e.g., 

visualization, data mining, trend analysis).  

Figure 2 presents, as an example of a basic application 

scenario, the visualizations (line graph, histogram, box 

plot) of one of the extracted variables in the 

aforementioned query, namely the indoor air relative 

humidity. 

 

 

 

Fig. 2. An example of descriptive statistics analysis and 

visualization of a monitored variable (obtained from a specific 

indoor air relative humidity sensor) in a specific space over a 

specific period of time (top: trend; middle: frequency 

distribution; bottom: box plot) 
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4 Concluding remarks and future work 

In this contribution, we argued for a more in-depth view 

of BIM application in AEC addressing not only to 

represent building fabric and facility information, but also 

to cover dynamic data relevant to buildings' optimal 

operation. Toward this end, appropriate data models and 

ontologies for representation of dynamic data (both 

primary performance data and high-level building 

performance indicator values) are necessary. Such an 

ontology can support data analysis towards building 

design, operation, and retrofit optimization throughout the 

buildings' life cycle.  

Base on a review of previous efforts, the present 

contribution described an ontology that captures the 

common characteristics of building monitoring and 

performance data. To demonstrate the usability and 

robustness of the ontology, a concrete implementation 

was targeted, using the HDF5 format for data storage and 

query. Moreover, the extraction of the stored data toward 

statistical data analysis and data visualization was 

demonstrated using the specific instance of an existing 

building with a comprehensive monitoring infrastructure. 

This implementation points to a number of critical issues 

and future challenges. For instance, in case of data 

obtained from legacy resources, certain data treatment 

processes and steps may be necessary. This is required to 

ensure the computability of the structured data with the 

specifics of the proposed ontology. Nonetheless, the 

implementation also demonstrated the potential for a fast 

and seamless data extraction process. 

We are currently exploring the potential of further 

developments in this area to effectively support a number 

of operations, including automated (or semi-automated) 

data cleansing, data discretization, derivation of virtual 

data points based on numeric simulation, as well as deeper 

application in model generation, data mining, control 

optimization, and preventive building systems 

maintenance. 

Acknowledgement: The treatment presented in this paper 
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