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Abstract. The use of photovoltaic (PV) technologies is one of the key means for achieving the balance 
between operational power demand and generation in net Zero Energy Buildings (nZEBs). However, direct 
use of PV power on-site is limited due to wide variability and uncertainty of PV output, the temporal mismatch 
between PV generation and load and other factors. Consequently, in addition to low self-consumption rates, 
the problem of peak grid load and peak PV feed into the grid persists. Batteries that are coupled to PV units 
may partially offer the solution to these problems, if operated under an intelligent control strategy. In this 
paper we proposed a forecast-based control strategy for battery-to-grid interaction aimed at enhancing self-
consumption and at reducing peak load. Python programming environment was used for data processing and 
algorithm development. Exemplification was made based on the reported hourly energy demand in one office 
building of 3000 m2 heated floor area located in Trondheim, Norway. Forecasting of electricity load profiles 
was based on the seasonal autoregressive integral moving average (SARIMA) model. For PV power 
forecasting, the algorithm communicated with external service – Solcast API. The search method for optimal 
scheduling of operational time and the extent of charging/discharging was proposed. The results showed that 
as opposed to conventional battery use, this control strategy allowed to achieve significantly more consistent 
grid interaction. It offered highly accurate battery scheduling on a day-ahead basis while utilising minimum 
historical data and computational resources. The algorithm may be beneficial for end-users and grid operators, 
and thus, it has a high potential for future integration into building energy supply systems. 

1 Introduction 
Meeting strategic energy and environmental targets for 
nations and communities requires significant performance 
improvements in building sector. Net Zero Energy 
Buildings (nZEB) would play a crucial role in achieving 
these targets through low operational energy use and 
production of renewable energy at a quantity that meets 
building’s delivered energy over the service lifetime [1]. 
Photovoltaic (PV) energy is considered as the key source 
that enables nZEB under various climate conditions and 
related political circumstances. Although grid-connected 
nZEBs do not require a match between instantaneous PV 
generation and instantaneous load, it is often preferred to 
increase the share of PV energy directly consumed on-site 
(self-consumption rate). One of the reasons for that is 
profitability as a result of the difference between self-
produced and retail electricity prices, grid feed-in tariffs 
and numerous incentives [2]. Another reason is the need 
for more consistent grid interaction, i.e. the solutions for 
frequency regulations and future power grid 
reinforcement to handle high PV feed-in and high loads 
are required otherwise [3]. Maximising the building self-
consumption while avoiding peak grid loads, therefore, is 
one of the key challenges that is focused by the research 
initiatives in the discipline. Two distinct but not mutually 

exclusive approaches can be used to tackle these 
challenges: demand side management (DSM) and the use 
of battery energy storage systems (BESS). The former is 
concerned with shifting the deferable loads to the time 
when PV system has high output. It often includes 
rescheduling of heating, ventilation, air conditioning and 
some other types of household equipment. The other 
approach enables energy flexibility by using PV energy 
stored in batteries at the time when load occurs. BESS is 
recognized as having a larger potential to increase self-
consumption rates [4]. Currently, best practices in the 
field of energy flexibility involve a combination DSM and 
BESS [2, 5]. 

For the effective use of both these approaches, a 
reasonably accurate forecast of energy demand and PV 
generation in the (nearest) future is required [2]. 
Instantaneous load and on-site PV power, however, are 
the sources of variabilities and uncertainties. In addition 
to thermal properties of the building envelope, climate, 
energy supply systems, building purpose, occupant 
behaviour and maintenance practices determine the 
unique shape of load profile that changes on day-to-day 
basis. Solar power profile is a function of daily and 
seasonal variations of both direct and diffuse radiation, 
outdoor temperature and other factors. For a short-term 
load forecasting in real-time, building energy 
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performance simulation techniques are rarely used. 
Detailed simulation is constrained by computational 
capabilities and the need for exhaustive building-related 
information. Data-driven approaches, on the contrary, 
may resolve some of these limitations [6]. Their use for 
electric energy demand prediction has been mainly done 
by regression analysis, machine learning techniques, and 
time series forecasting. With regression analysis, one 
aims at identifying a set of influential variables and the 
underlying (often non-linear) model structure. Machine 
learning techniques offer the benefits of automated 
pattern discovery instead. Amongst the limitations of both 
these approaches is the need for several explanatory 
variables. With time series modelling, however, the 
prediction of target variables can be made based only on 
the past observations of itself, i.e. applicable for 
univariate problems. Therefore, such adaptive, 
parsimonious time series forecasting is expected to play 
an important role in facilitating energy flexibility and 
more consistent grid interaction for nZEBs. 

Likewise, real-time PV power forecasting under 
uncertain weather conditions is one of the fundamental 
challenges to enable energy flexibility. Practical solutions 
are offered by persistence models, physical and statistical 
approaches [7] that utilise sky models or data streams 
from either satellite imagery or reference PV systems. 
Recent advancements in the field succeeded at combining 
these into hybrid approaches which allows to achieve high 
forecast accuracy [8]. 

Given that two components, the forecasted PV output 
and load profiles are available, battery charge/discharge 
operations can be scheduled with one or more objectives, 
most often these are maximising self-consumption or 
battery service lifetime, minimising energy cost, 𝐶𝑂# 

intensity or peak grid loads. A comprehensive overview 
of operational strategies for PV-coupled battery systems, 
their objectives and methods are available in studies [4, 9, 
10]. 

In this study, some of the best practices related to 
forecast-based control were implemented and elaborated 
further. Analysis and modelling tasks were carried out 
with Python programming language using NumPy, SciPy 
and Sk-learn libraries for numerical computing, 
Statsmodels for model training/testing, Pandas for data 
wrangling, Matplotlib and Seaborn for data visualisation. 

2 Methodology 

2.1 Case study 

A case study was one non-residential building located in 
Trondheim, Norway. It is used for health-related and 
recreational purposes and has the total heated floor area 
of more than 3000 𝑚#. Both electric and district heating 
energy use for the building were reported on hourly basis 
and accessible as datetime-indexed arrays through an 
energy monitoring platform. 

Historical data over the entire building’s monitoring 
period of more than five years is illustrated in Fig. 1. 
Because district heating was utilised in cold periods, 
electric energy use exhibits weak seasonality through the 
year. Also, no monthly/weekly seasonality was observed. 
Since such seasonality in electric energy use is negligible 
here, further data analysis and algorithm exemplifications 
are made using the most recent observation (Fig. 2) on the 
span of 90 days (Jul. 10'(, 2018 through Oct. 8'(, 2018, 
accounting for 2160 observations total). 

 
Fig. 1. Historical data (hourly measurements) on electric and district heating energy use for entire observation period. 

 
Fig. 2. Electric energy use (hourly measurements) in most recent observations. 

 
It can also be observed from Fig. 2 that the series has 

a strong daily pattern. The lowest electric energy use for 
the building occurs at around 6:00. It increases in linear 
or exponential manner through the day, achieves its peak 

 
    

 
, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110509)

201
E3S 111
CLIMA 9

5027 27

2



 

 

between 15:00 and 23:00 followed by decrease through 
the night. 

The building is assumed to have a PV system of 
150	𝑘𝑊 total installed capacity in place with south-
oriented, 30° tilted modules. 

2.2 Energy use forecasting 

For univariate time series forecasting, the Box-Jenkins 
Autoregressive Integrated Moving Average (ARIMA) 
model is one of the most commonly used [11, 12]. For 
applications with seasonal effects, ARIMA(𝑝, 𝑑, 𝑞) has 
been modified to the multiplicative seasonal 
SARIMA(𝑝, 𝑑, 𝑞) × (𝑃, 𝐷, 𝑄):. Studies [13, 14] 
exemplify its application for energy forecasting purposes. 
Model’s parameters are following: 

𝑝, 𝑃 – non-seasonal and seasonal autoregressive (AR) 
components; 

𝑑, 𝐷 – non-seasonal and seasonal order of 
differencing; 

q,	Q – non-seasonal and seasonal moving average 
(MA) components; 

𝑠 – periodicity of the season. 
Detailed formulation for both ARIMA and SARIMA 

is provided in literature [15]. In this study, an open-source 
statistical computing package Statsmodels [16] has been 
used for SARIMA training/testing. Package 
documentation contains the details on SARIMA 
implementation in Python. 

Model’s application requires the series to have 
constant mean, variance and autocorrelation, i.e. 
stationary process. This is not the case for original series, 
as can be seen in Fig. 2. A sequence of steps for process 
stationarization here involves seasonal and non-seasonal 
differencing. The corresponding autocorrelation and 
partial autocorrelation functions (ACF and PACF) are 
illustrated in Fig. 3. 

 
Fig. 3. ACF and PACF correlograms. a) Original data; b) Non-seasonal differencing; c) Seasonal differencing. 

 
To induce stationarity, the first non-seasonal 

differencing was taken on the original series: 
𝑦′' = 	𝑦' − 𝑦'AB = (1 − 𝐵)𝑦'   (1) 

where: 
𝑦 – original series; 
𝐵 – backshift operator, such that: 

𝐵D𝑦' = 	𝑦'AD   (2) 
The ACF of the resulting series shown in Fig. 3b.1 still 

indicates the presence of statistically significant lags. 
Therefore, an additional seasonal differencing step was 
applied: 

𝑦′′' = 	 (1 − 𝐵#E)𝑦′'   (3) 
Referring to the original series, the additional seasonal 

differencing was obtained as: 
𝑦FF' = 	 (1	 −	𝐵	 − 	𝐵

#E	+	𝐵#H)𝑦' = 
𝑦' −	𝑦'AB 	−	𝑦'A#E +	𝑦'A#H  (4) 

The newly acquired time series had the mean value 
close to zero (0.0028) and a reasonably small number of 
significant autocorrelations as shown in Fig. 3c.1, at lag 
1, 2, near- or at the first seasonal lag that did not repeat 
afterwards. This series was considered stationary, which 

is also confirmed by the Dickey-Fuller [17] test. The 
partial autocorrelation function (PACF) plot shown in Fig. 
3c.2 exhibits slow decrease at the non-seasonal level and 
a spike at the seasonal lag. Although further differencing 
may result in even more consistent series, this step could 
induce the negative effect of overcomplication and 
overfitting the model. Moreover, as reported by others 
[18], these seasonal lags could merely reflect large 
correlation of non-seasonal ones. 

The PACF correlogram in Fig 3c.2 indicates that the 
first 4 lags are significantly different from zero, thus 
suggesting the feasible non-seasonal component to be 
within the range AR ∈ [0,4]. Similarly, from the ACF plot 
in (Fig. 3c.1) non-seasonal MA ∈ [0,4]. Because PACF 
and ACF in final series indicate significant near-seasonal 
lag, the seasonal AR and MA chosen here are 1 and 1.  

Since non-seasonal components AR (𝑝) and MA (𝑞) 
are essential for the model performance, their 
identification in this study is facilitated by grid search 
method. Grid search over the parameters’ space implies 
training and evaluating the models with all feasible 
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combinations of parameters 𝑝, 𝑞. The root mean squared 
error (RMSE) can serve as a reference metrics for the 
model performance evaluation used here, defined as: 

𝑅𝑀𝑆𝐸 =	SB
T
∑ (𝑦V − 𝑦WX)#T
TYB   (5) 

where: 
𝑛 – number of samples; 
𝑦V – actual observation; 
𝑦WX  – model prediction. 
The preferred model parameters (𝑝, 𝑞), therefore, 

correspond to the lowest RMSE obtained on the test set. 

As an additional measure used to ensure that the selection 
of 𝑝 and 𝑞 is not affected by coincidental patterns in the 
series, a 𝑘-fold cross-validation (CV) procedure is 
applied. CV for time series models implies splitting the 
dataset into 𝑘 subsets where a training set is immediately 
followed by a test set. Thus, 90 most recent days of 
monitored data are split into 𝑘 = 	5 subsets as illustrated 
in Fig. 4. Grid search is conducted for each CV step. 
Further, the parameters (𝑝, 𝑞) are selected based on 
average RMSE for all CV steps, as illustrated in Fig. 4 
with color-coded heatmap.

 
Fig. 4. Parameters tuning and validation. CV intervals split (top) and grid search results (bottom). 

 
For a given case, the most favourable model 

parameters p and q are 0 and 4 accordingly, since the 
average over all CV steps RMSE is the least for this set of 

parameters. The performance of SARIMA(0,1,4) ×
(1,1,1)#E is illustrated in Fig. 5. 

 
Fig. 5. Model performance. Top: original, forecasted and residuals series. Bottom: distribution of residuals. 

 
Forecasted series overlays closely with the test series. 

Both, in- and out-of-sample residuals do not exceed 10 
𝑘𝑊ℎ. In-sample residuals follow normal distribution. 
Out-of-sample residuals density, however, is skewed to 
the left compared to the shape of equivalent normal 
distribution which indicates the loss of accuracy in long-

term forecasting. Although such systematic error can be 
neglected in some applications, we restrict this control 
strategy to day-ahead horizon, where the accuracy is the 
highest. 
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2.3 PV power forecasting 

As was mentioned before, the proposed control strategy 
involved communication with external service Solcast 
API [19] to obtain high-quality PV output forecast. Data 
request included geospatial (latitude and longitude) and 
technical information about the PV system (installed 
capacity, azimuth and tilt angle). The API’s response is a 
datetime-indexed array of the forecasted PV power with 
30 minutes temporal resolution over a span of 7 days. 
Further data wrangling involves two steps. Since the 
response dataset is UCT-indexed, a conversion to local 
time is needed. Also, original data is converted from 
power to energy units and from 30 minutes to hourly 
intervals. An example of postprocessed API’s response 
based on PV system’s parameters mentioned in Section 
2.1 is illustrated in Fig. 6. 

 
Fig. 6. PV generation (reversed), historical and forecasted. 

2.4 Load matching 

Given that the energy use and PV generation profiles were 
known, the task of load matching was to allocate the 
aggregated daily PV energy to the time when energy use 
is the highest on that day. This implies finding threshold 
value (𝑝) that separates grid from battery energy use. The 
task could be formulated as follows: 

∑ 𝑃\]#E
B = ∑ ^∑ (𝑃 − 𝑝)_̀

_a b ± 𝜀T
TYB   (6) 

for all (𝑃 − 𝑝) > 0 and if ∑ 𝑃\]#E
B > 0. 

Here: 
𝑃\] – hourly PV energy, 𝑘𝑊ℎ; 
𝑃– hourly energy use in the building, 𝑘𝑊ℎ 
𝑝	 ∈ [0, 𝑃fgh] – threshold value for the day, 𝑘𝑊ℎ; 
𝑇B, 𝑇# ∈ [0,24] – the beginning and the end of interval 

𝑛 when battery should be used; 
𝑛 – number of time intervals, used to account for the 

possibility of battery use during more than one period 
through the same day; 

𝜀 – absolute error tolerance, 𝑘𝑊ℎ. 
Solving this problem analytically would require 

approximating the load and PV curves and their 
subsequent integration. To avoid the associated loss of 

accuracy, a numerical search technique has been 
implemented instead. Namely a dichotomous search 
algorithm was used to find the threshold value 𝑝. Fig. 7 
illustrates the search for 𝑝 on Oct. 9'(, 2018. By gradually 
eliminating half of the continuous search space that was 
known at previous iteration, the condition (eq. 6) is 
achieved in a recursive manner after 8 iterations with 𝑝 =
11	𝑘𝑊ℎ, which yields: 

∑ 𝑃\]#E
B = ∑ (𝑃 − 𝑝)_̀

_a = 52.8 ± 0.1	𝑘𝑊ℎ. 
Finding the time intervals 𝑇B, 𝑇# further, is based on the 
condition where 𝑃 > 𝑃 − 𝑝. 

 
Fig. 7. Search progress. 

3 Results and discussion 
Given the techniques discussed above, this study 
proposed the algorithm for day-ahead battery operation 
scheduling that follows a block diagram in Fig. 8. 

The first step was to send two data requests: one for 
historical energy use data (of a desired length, e.g. 𝑁 =
90 days) and one for PV output forecast (installed 
capacity, latitude, longitude, the azimuth and the tilt of the 
PV modules). The response from Solcast API was then 
converted to local time, from power to estimated energy 
units and from 30 minutes to hourly time resolution. Since 
the day-ahead forecast was used, the series is cut at 24'( 
element. The response from the energy monitoring 
system’s API is a datetime-indexed array of length 𝐿 =
24𝑁. 5 grid search and cross-validation steps were taken 
after which the SARIMA model parameters (𝑝, 𝑞) were 
selected such that the corresponding average RMSE is the 
smallest. With these parameters, SARIMA(𝑝, 1, 𝑞) ×
(1,1,1)#E was trained using the entire 𝐿-length training 
set. The trained model was further used for predicting 
energy use for the following day. Both arrays, the 
forecasted energy use and PV output enter the load 
matching unit and follow the procedure described in 
Section 2.4. After the load matching task was completed, 
the delay of 24 hours is initiated. The output of load 
matching unit was the reshaped grid load profile and the 
recommended battery charge/discharge dynamics (as 
exemplified in Fig. 9) to achieve such peak shaving effect.
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Fig. 8. Process flow diagram. 

 

 
Fig. 9. Algorithm’s output. Reshaped load profile (top); Charge-discharge dynamics (bottom). 

 
Technical and climate conditions under the test case 

did not entail the need for controlling grid feed-in, 
because daily aggregated PV energy is always smaller 
than aggregated energy use. In case if daily PV generation 
was higher, a search algorithm would separate PV profile 

into two parts, one for self-consumption and one for grid 
export: 

∑ 𝑃#E
B = ∑ ^∑ (𝑃\] − 𝑝\])

_̀
_a b ± 𝜀T

TYB  (7) 
for all (𝑃\] − 𝑝\]) > 0 and if ∑ 𝑃#E

B > 0. Here 𝑝\] ∈
[0, 𝑃\]mno] – threshold value specific for daily PV profile, 
𝑘𝑊ℎ. Under such circumstances, PV energy in range 
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[0, 𝑝\]] was excessive and could be exported 
instantaneously. 

Thus, an algorithm suggests a reshaped profile, where 
the peak energy use and/or PV feed-in are avoided. 
Significantly more consistent energy use profile can be 
achieved for the days with high PV output, e.g. Oct. 8'( 
and Oct. 10'(. Over the entire period between Oct. 8'( 
and Oct. 14'(, 461	𝑘𝑊ℎ of available PV energy offer 5% 
to 51% reduction of daily peak energy use from the grid. 

This approach for day-ahead scheduling of battery 
operational time and intensity remains relatively simple 
and requires little historical data. It may also be used to 
reshape load profiles in response to dynamic energy price 
or 𝐶𝑂# intensity. 

The selection of some parameters for SARIMA was 
justified and automated. However, a different case study 
might reveal the need to conduct grid search over a larger 
set of parameters, e.g. seasonal components (𝑃, 𝑄) or to 
make more steps to achieve stationary series (𝑑, 𝐷). 
Additional strong seasonality in building operation, e.g. 
weekly/holiday-based, monthly or annually, may require 
added complexity of SARIMA, resampling the 
underlying data or considering another time series model. 
The needed length of historical data must be satisfied 
accordingly. Further automation of these procedures, 
therefore, is needed to achieve more robust battery control 
that would suit the buildings of various types and more 
complex load profiles. For on-site algorithm deployment, 
as opposed to forecasting carried out in data centres, 
optimization of computational time and resources usage 
may be necessary. 

Forecasting and control principles used in this study 
exclude the adaptation to sudden, unforeseen changes that 
may occur on the short term. Also, no attention is given to 
the potential technical limitations associated with 
charge/discharge intensity, critical depletion and system’s 
losses. The authors anticipate the best application of the 
algorithm in combination with model predictive control 
or similar. 

Expanding the forecasting horizon and considering a 
more long-term control strategy may offer even more 
consistent load profile. This option, however, is limited 
by accuracy (as can be seen in Fig. 5) and data needs in 
forecasting techniques currently used. Potential 
improvements of energy use forecasting can be achieved 
through including exogenous variables in time series 
modelling, e.g. thermal properties of building envelope, 
HVAC equipment specifications/setpoints and detailed 
data of occupant behaviour. The improvement of 
forecasting accuracy is also expected through 
supplementing time series models with other techniques, 
as discussed elsewhere [6]. 

Longer-term control strategies are likely to require 
more battery storage capacity. Techno-economic 
feasibility studies of such measures would have to address 
the trade-off between self-consumption rate, smoothness 
of grid interaction, battery capacity and utilization rate. 
This should be in line with the measures to prolong battery 
service lifetime as discussed in study [20]. As outlined in 
another study [4], the acceptance of such control 

strategies in buildings and communities highly depends 
on economic, technological and policy-related factors. 

4 Conclusions 
In order to meet energy efficiency and environmental 
targets without compromising grid stability, an increased 
self-consumption while smoothing grid interaction has to 
be promoted in nZEBs. This challenge requires not only 
capacity gains for PV systems and energy storage units, 
but more intelligent approaches for their utilization. The 
latter relies strongly on accurate energy and PV output 
forecasting. 

With this article, an autonomous, parsimonious 
forecast-based control strategy was proposed. High 
performance of building energy use forecasting was 
achieved with time series model SARIMA supplemented 
by grid search for parameter identification and 5-fold 
cross validation. The proposed algorithm benefits from 
high quality satellite-derived PV power forecasting 
services. It is shown that for peak shaving purposes, the 
battery operation time and intensity can be scheduled on 
a day-ahead basis. 

Such control strategies are likely to contribute to 
achieving the energy and environmental targets under the 
growing demand for efficient built environment. An 
increasing accessibility of PV systems and energy storage 
solutions are expected to positively influence their 
adoption. 
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