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Abstract. Grid-edge technologies (GET) enable and amplify the impact of three emerging 

energy system trends: electrification, decentralisation, and digitalisation. Smart grid 

integrated heat pumps with thermal energy storage enable both the electrification of heating 

and decentralised demand response. Such power-to-heat technologies simultaneously 

decarbonise heating and facilitate the grid integration of more variable renewable electricity 

in a cost-effective manner. This may help to explore and exploit untapped wind generation 

potential. This study explores the flexibility potential of a domestic scale heat pump with 

thermal energy storage in a typical Irish home in December. The system is simulated to 

investigate demand-side flexibility and sensitivity to both heat pump and thermal storage 

capacities for three days with wind energy shares of 7%, 25%, and 60%. Using real-time 

electricity prices and optimising for operational cost, the implicit demand flexibility 

potential is quantified with different combinations of heat pump power and storage capacity. 

The results suggest that 33-100% of critical loads can be shifted dynamically to low-cost 

periods. Optimised system design depends on local climate, heat demand profile, 

optimisation horizon, and the type of heat pump. Optimisation with genetic algorithm 

yielded near-global optimal results approximately 40 times faster than with exhaustive 

enumeration. 

1 Introduction to grid-edge technology 
and smart heat 

Electrification, decentralisation, and digitalisation are key 

emerging energy system trends. The increasing share of 

variable renewable electricity capacity on the grid will 

necessitate an increasing share of demand flexibility and 

energy storage. Instead of the traditional centralised 

generation that follows predicted electricity demand, 

next-generation electricity grids must accommodate 

intelligent balancing of demand and supply in a 

decentralised flexible manner [1,2]. Unusually, and to a 

large extent, electricity demand will have to follow 

electricity generation, requiring temporal flexibility to 

incite or curb demand. In this context, the electrification 

and decarbonisation of heat and transport offer huge 

potential by providing additional flexible loads. For 

instance, heat may be added or removed from a thermal 

store (Power-to-Heat), car batteries may be charged 

(Vehicle-to-Grid), or hydrogen produced through 

electrolysis (Power-to-Gas) during periods of surplus 

low-carbon electricity generation. This defines both the 

opportunity and the challenge. 

One example of how electricity demand may follow 

generation is the common practice of industrial demand 

response. Large electricity users enter mutually beneficial 

agreements with their energy retailers to switch large 

loads at short notice from the grid operator to help balance 

the electricity grid. Smaller loads may be aggregated in a 

pool by third-party aggregators to scale up to a significant 

switching capacity [3]. In some jurisdictions with limited 

supply-side flexibility, electric water heaters have been 

used as a source of flexibility for many years. 

The potential for residential demand-side flexibility 

remains largely untapped. The total power of switchable 

loads such as heat pumps, electric resistance heaters, and 

electric car chargers generally only adds up to several 

kilowatts per household. This power is too small to be 

traded on the capacity markets. Hence, in conventional 

energy system thinking, aggregation is often regarded as 

the solution. However, this generally means that control 

over the heat pump must be yielded to the aggregator. 

In Ireland, 50,000 heat pumps are projected to replace 

domestic boilers by 2020. It is estimated to increase to 

200,000 by 2030 [4]. This adds circa 150-600 MW of 

flexible loads to the electricity grid. In Ireland, the 

average electricity demand during 2017 was 3.2 GW 

peaking during winter at 5 GW. Thousands to hundred-

thousands of households would be required to absorb 

surplus electricity generation at the mega or gigawatt-

scale. In Europe, the number of heat pumps could increase 

from 1.6 million to 10 million between 2020 and 2030 [5]. 

Incentives for consumers and user-friendly automated 

control systems must be in place to motivate consumer 

participation. The roll-out of smart meters and real-time 

pricing (RTP) electricity tariffs should be accelerated, as 
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mandated by the European Commission. Time-of-use-

tariffs are the first step into providing these incentives. 

Customers may avail of cheap night-time electricity to 

store heat for space heating and sanitary hot water. 

Furthermore, a peak tariff encourages the avoidance of 

electricity use during peak demand hours. In some 

European countries such as Germany and the UK, heat 

pump tariffs are offered, where the electricity provider 

reserves the right to block heat pump operation for a 

period of 30-120 minutes. In exchange, the customer 

profits from cheaper electricity rates. 

However, waiving switching authority to a third party, 

also known as explicit demand response, may neither be 

desirable for domestic customers nor is the inconvenience 

due to the violation of occupant comfort levels [6]. A 

more discrete and decentralised approach is offered 

through implicit demand response, i.e. the automatic 

reaction to variable price signals. Variable electricity 

tariffs reflect the cost of generation and vary as a function 

of supply and demand throughout the day. Smart meters 

and variable electricity tariffs can thus economically 

incentivise the shift of electricity use from prohibitive 

high-cost peak periods to low-cost periods with surplus 

(renewable) electricity. The ultimate decision on how to 

react to these price signals remains with the end-user. 

Apart from end-user financial benefits, this 

mechanism benefits the distribution system and 

transmission system operators. It can be utilised as a 

decentralised congestion management balancing tool. 

Generation, demand, and storage could be balanced at a 

local grid level. Its net effect could then be further 

escalated to regional, national, and international levels. 

Speculating further, the future energy system may consist 

of decentralised generators, consumers, storage providers, 

and the grid, trading energy on a peer-to-peer basis. Each 

participant can optimise their market engagement 

according to their own objectives. 

Technology that automates the exploitation of variable 

electricity tariffs can be categorised as grid-edge 

technology. Grid-edge technology enables and amplifies 

the emerging energy system trends of electrification, 

decentralisation, and digitalisation as shown in Fig. 1. 

These three trends are seen to be acting in a so-called 

virtuous cycle, enabling, amplifying and reinforcing 

                                                           
1 Heat Pump COP=3, Oil and Gas Boiler η=0.9 

developments beyond their individual contributions [7]. 

Electrification of heat by means of heat pumps enables the 

decentralisation of demand response through digitalised, 

automatic real-time optimisation of consumption. 

The low cost of converting electricity to heat and the 

low cost of heat storage make power-to-heat (P2H) 

technology a particularly promising flexibility option. 

The electrification of heat can simultaneously facilitate 

the decarbonisation of the heating sector and the power 

system integration of more variable renewable electricity 

generation in a cost-effective manner [8]. Heat pumps can 

already outperform fossil fuel-based heating 

economically and ecologically as illustrated in Fig. 2 for 

Ireland.1 Both emissions and cost have the potential to be 

further improved through grid-edge technology. The 

preferential use of low-cost electricity reduces operational 

cost. Since low-cost electricity often coincides with large 

shares of renewable electricity generation on the grid, the 

CO2 intensity of the utilised electricity also decreases.  

The ambition of this research is to exploit this triple 

boon of low-cost, low-emission heat and increased use of 

renewable electricity through flexibility. The automatic 

real-time optimisation of a domestic scale air source heat 

pump (ASHP) and thermal energy storage (TES) offers 

decentralised demand response to the grid.  The heat 

pump is scheduled to satisfy demand over the 

optimisation horizon, and it is optimised for day-ahead 

electricity prices. This requires knowledge about both the 

expected heat demand of the application and future energy 

prices. The temperature forecast is required because heat 

demand and efficiency of the ASHP are sensitive to 

ambient air temperature. A model of the heating system is 

simulated to quantify system operational cost and 

energetic performance. 

The remainder of this article explores different aspects 

of this heat-pump based grid-edge technology. The 

approach is optimised for a detached house in Ireland with 

a C2 energy rating on three consecutive days in December 

with varying shares of variable renewable electricity of 

7%, 25%, and 60% on the grid. This is mainly from wind. 

The flexibility potential is quantified for these scenarios 

in terms of load shifting capacity. Sensitivity to heat pump 

power and thermal energy storage capacity was tested 

with ranges of 5-10 kW and 550-1,000 litres of water 

Fig. 2. Cost and CO2 emissions of supplied thermal energy for 

space heating from different energy carriers 

Fig. 1. The virtuous cycle of electrification, decentralisation, 

and digitalisation [7]. 
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respectively. Finally, quasi-optimal results were obtained 

using genetic algorithm and compared to global-optimal 

results obtained through exhaustive calculation. 

The next section briefly describes the simulated model 

and optimisation approach, followed by a section that 

discusses the acquired results in the context of the study's 

limitations leading into some concluding remarks and 

suggestions for further research. 

2 Model description 

The system depicted in Fig. 3 consists of an air source heat 

pump and sensible thermal energy storage. It is controlled 

by supervisory control. The system is optimised on the 

thermal energy supply side excluding the heating 

distribution system or modelling of room temperature. 

The availability of thermal energy at a minimum 

distribution temperature in the TES is assumed to be 

enough to maintain appropriate room temperatures for 

every 60-minute time step. This may be achieved by 

thermostatically controlled circulation pumps on the 

distribution side.  

The supervisory control retrieves data about the 

current state of charge of the TES, the forecasted ambient 

air temperature, the expected heat demand profile, and the 

day-ahead electricity prices. Based on this data, it 

generates a schedule that ensures sufficient thermal 

energy to be available in the TES at every time step at the 

lowest operational cost. The temperature forecast is 

available through standard web-services from the 

meteorological service office and may be used to derive 

the expected heat demand profile and heat pump 

performance. Day-ahead electricity prices are derived 

from spot market prices (SMP). As Ireland has not 

implemented real-time electricity tariffs yet, these spot 

market prices are scaled to approximate more realistic 

end-user prices. Here, the ratio of instantaneous spot 

market price to annual average is multiplied by an 

assumed base electricity rate of €0.10/kWh. 

The state of charge (SOCt) of the thermal energy 

storage is the energy content available at the end of the 

previous interval SOCt-1 plus heat added from the heat 

pump QHP,t minus heat demand QD,t and storage losses QL,t 

(eq. 1). The minimum storage temperature is set to the 

minimum useful supply temperature of 45 °C for a typical 

hydronic radiator-based distribution system (TTES,min). At 

this temperature, the TES is considered to contain zero 

useful energy. After heat has been added, the TES 

temperature TTES,t increases from the previous storage 

temperature by the ratio of added heat to the product of 

storage mass (m) and specific heat capacity (Cp) (eq. 2).   

A maximum TES temperature constraint was found to 

be redundant in a previous study due to the fact that high 

storage temperatures result in low coefficients of 

performance (COPs), which in turn increase operational 

cost. As a result, the economic optimisation has the effect 

of self-regulating TES temperature [9]. In this study 60 °C 

was the highest observed TES temperature allowing the 

heat pump to perform with a reasonable COP of 1.5-2.8 

assuming an ambient air temperature range of ± 20°C. 

The thermal capacity of the heat pump is taken as 

constant. The electricity input varies according to the heat 

pump’s COP, which is a function of sink and source 

temperatures. The heat demand profile is synthetically 

created using the heating degree method for the typical 

annual space heating demand of a detached Irish house 

with a C2 energy rating (~93 kWh/m2/annum) and a floor 

area of 156 m2. Thermal storage losses from the 

Fig. 3.  Schematic showing system components, energy flows, data streams and dependencies of optimised HP and TES control 
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completely mixed hot water tank are calculated 

multiplying the thermal transmittance (U) and heat loss 

area of the thermal envelope of the storage vessel (A) with 

the temperature differential between the TES and its 

surroundings (ΔT) (eq. 3).  

Quasi-steady state performance map models are used 

to approximate the heat pump COPt as a function of 

source and sink temperatures (eq. 4). A two-layer, feed-

forward neural network with seven sigmoid hidden 

neurons and linear output neurons was trained with 

manufacturer data for the Mitsubishi Ecodan range (based 

on EN14511) using the Levenberg-Marquardt 

backpropagation algorithm. Perfect forecast of ambient 

air temperatures is assumed using historical data from the 

Irish Meteorological Service (MET Éireann). 

SOCt=SOCt-1+QHP,t-QD,t-QL,t                     (1) 

TTES,t=TTES,min+(SOCt/mCP)                       (2) 

QL,t=UAΔTt                                              (3) 

COPt=f(TAMB,TTES)                                    (4) 

Figure 4 shows key power system statistics for the period 

of 4th-6th December 2017 during which the heat pump and 

TES system was simulated. The shares of electricity 

demand generated by wind energy were recorded as 7%, 

25% and 60% for the three days respectively. During 2017 

the wind energy share of electricity demand was 

approximately equivalent to the renewable energy 

fraction of generated electricity and will from now on be 

referred to as the renewable energy fraction of electricity 

REFEL. The ambient air temperatures and thus heat 

demand profiles for these days were almost identical with 

mean temperatures of approximately 6 °C fluctuating 

from 5-8 °C. The system was modelled over the 

optimisation horizon of 24 hours with hourly time steps. 

This is consistent with input data resolution. However, 

longer optimisation horizons and higher resolution are 

possible, but such models also require longer simulation 

and optimisation run-times. Also, minimum heat pump 

run-times of generally 15 minutes must be 

accommodated. 

3 Optimisation approach 

The optimisation objective was defined as meeting heat 

demand with minimum operational cost. Other 

optimisation objectives such as minimum imported 

electricity or maximum share of renewable heat have 

yielded similar results to cost minimisation in a previous 

study [9]. 

The objective function (Je) quantifies operational cost 

over the optimisation horizon as the sum of electricity cost 

for every time step (t) (eq.5). Electricity cost is the product 

of electricity quantity (Wel,t) and unit price (αt) (eq. 6). The 

quantity of electricity is the thermal energy supplied by 

the heat pump (QHP,t) divided by the COPt. Perfect unit 

price forecast is assumed using scaled historical spot 

market price data from the Irish Single Electricity Market 

for Ireland and Northern Ireland. 

Je=∑WEL,tαt                                 (5) 

WEL,t=QHP,t/COPt                             (6) 

The magnitude of the optimisation problem depends on 

the number of values that the decision variable can 

assume (Z) and the number of time intervals over which 

the system is to be optimised (T) yielding ZT 

permutations. Computation time further depends on 

model complexity and on the selected optimisation 

method.  

In this study exhaustive search was used to 

systematically enumerate all possible solution candidates 

to find the global optimum. The results were then 

compared to a meta-heuristic approach using genetic 

algorithm. The focus was on run-time and optimisation 

error. System model, exhaustive enumeration and genetic 

algorithm were programmed in the programming 

language PYTHON. The parameters yielding satisfactory 

genetic algorithm performance were a population of 60, a 

mutation rate of 2.5%, single cross-over point, elitist 

selection truncated at 40%, and a maximum of 5,000 

trials. 

4 Results and discussion 

As a reference case, a model of a variable speed heat 

pump is simulated to exactly match heat demand at every 

time step. For the reference case, a distribution 

temperature of 45 °C is assumed to calculate dynamic 

COPs. This demand-following operation of the heat pump 

does not offer any demand flexibility to the grid and 

would exacerbate the grid's peak electricity demand 

periods. This is especially the case in the evening when 

ambient air temperatures decrease, and people return from 

work. The morning peak is also affected where daily 

minimum temperatures are experienced, and people get 

up for work. 

The results of this explorative study offer a snapshot 

of the load shifting potential of implicit demand response 

with optimised control schedules for different heat pump 

and TES capacities. Further simulation over an entire 

heating season will be required in order to provide more 

meaningful insights. However, certain trends can be 

Fig. 4.  Key power system statistics from 4th-6th December 

2017 sourced from Ireland’s TSO Eirgrid 
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observed, and the reader may be referred to a previous 

study indicating operational cost savings and share of 

renewable heat for an entire heating season [9].  

4.1 Flexibility potential  

All optimal schedules reveal successful load shifting 

away from high price periods, as may be expected when 

carrying out an optimisation for low operational cost. As 

high prices indicate supply-demand bottlenecks, the 

temporal shift of heat pump loads to low-price periods 

effectively facilitates price induced balancing of the grid 

supply and demand. It may be noted that grid bottlenecks 

exist both on a national grid scale and on a more local 

distribution grid scale. Therefore, local congestion 

problems may be tackled by using regional or nodal real-

time pricing schemes to balance supply and demand from 

micro-grid level up to (inter-)national grid level. 

The flexibility potential of implicit demand response 

is not as easily quantified as for explicit demand control. 

Explicit demand-side flexibility can be measured in terms 

of available switchable power, time-frame, and thus 

energy. This resource can then be used to offer services to 

the grid. It can provide dispatchable and reliable capacity, 

balancing and ancillary services to Transmission and 

Distribution System Operators. In implicit demand 

response, there is no firm commitment of the consumer to 

react to price signals. However, it can be assumed, that 

above-average prices imply a reduction of electricity use 

through the use of grid-edge technology. With increasing 

consumer participation, it can be expected that 

predictability and reliability of implicit demand flexibility 

can be enhanced [10]. 

In this study, the flexibility potential of implicit 

demand response is quantified as the share of electrical 

load that is shifted from above average price periods, 

which imply demand-supply bottlenecks, to low-cost 

periods. Figure 5 illustrates how optimised GET control 

organises heat pump operation accordingly. The black 

columns represent the load-following reference case (LF) 

and thus simultaneously the heat demand. The diagonally 

striped columns mark heat demand periods that coincide 

with above-average electricity price periods. The GET 

heat pump schedule is represented by the grey columns. If 

a grey column is located behind a striped column, it means 

that the heat load could not be shifted from the above-

average price period. The black and grey lines show the 

electricity cost profiles and the stored heat respectively. 

Note that the store was assumed to be empty at the 

beginning of each day and retains unused thermal energy 

at the end of the day. The displayed results belong to the 

7kW.1000L scenario, i.e. the combination of a 7 kWTH 

ASHP and a 1,000 litres sensible TES.  

Figure 5a) illustrates an exemplary demonstration of 

the intended effect of the implicit demand response. Heat 

is stored in the TES before above-average electricity cost 

periods. In the diagram, this is revealed by the grey SOC 

curve leading the black electricity cost curve. The 

optimised GET schedule entirely avoids heat pump 

operation during the above-average cost periods from 9-

11am and 16-20pm. Thus, on the day with 7% REFEL, 

100% of the electric load of 0.94 kW per HP and TES 

system is shifted from high-cost periods to low-cost 

periods. The same flexibility potential is realised on the 

day with 60% REFEL (Fig. 5c).  

Conversely, during the 25% REFEL day, the GET 

control scheme shifted only 67.3% of the electrical load 

from above-average cost periods (Fig. 5b). During six 

high-cost periods, the electrical load was reduced by 0.95 

kW. However, in three cases the GET control increases 

the electrical load by a factor of approximately 2.5. The 

reason for this reveals itself in the nature of fluctuations 

of the electricity price profile. The electricity price 

profiles for 7% and 60% REFEL follow typical working 

day residual load profiles with morning and evening 

peaks. The 25% REFEL profile, on the other hand, is 

characterised by more frequent fluctuations at smaller 

amplitudes. The resulting optimal schedule, thus, only has 

one intense charging period before the morning peak. 

Subsequently, the system schedule is following the 

multiple minor price fluctuations and alternates between 
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charging and discharging. To that end, it must be stated 

that some combinations of price, temperature, and 

demand profile exist that inherently limit the flexibility 

potential and occasionally even increase peak electricity 

demand. Nonetheless, a significant part of the load is 

shifted, and stronger price signals would mitigate this 

issue. 

4.2 Sensitivity to HP and TES capacity  

Figure 6 displays the optimal schedules for different 

combinations of storage and heat pump capacity for the 

day with 7% REFEL. Black rectangles represent scheduled 

heat pump operation.  

The shaded areas display above average price periods, and 

peak price periods are shaded slightly darker. The 

different combinations reveal varying degrees of 

flexibility that can be offered to the electricity grid. For 

instance, the optimal schedule for the combination of a 5 

kWTH heat pump and 550-litre TES system (5kW550L) 

exhibits a load profile that barely deviates from the load-

following reference case. The heat pump is required to 

operate during restrictive above-average price periods 

because it is required to satisfy the heat demand profile 

with a mean of 3.2 kWTH and a peak of 3.5 kWTH. 

Consequently, the remaining heat pump capacity is not 

sufficient to charge the TES and offer considerable 

flexibility. As a result, only 32.9% of the electrical load 

can be shifted. Combinations of 1,000 litre TES and heat 

pump capacities of 5 and 7 kWTH successfully shift 100% 

of the electrical load at minimal operational cost.   

Table 1 summarises the performances of the optimised 

heat pump schedules. The flexibility of the various system 

combinations is quantified as the share of the electric load, 

which can be shifted from restrictive periods to low-cost 

periods. The associated operational cost of the system is 

then used to define the flexibility cost indicator (FCI), 

which represents the ratio of flexibility to operational 

cost. Consequently, a high FCI indicates high flexibility 

at low operational cost.  

The highest FCIs were observed when the largest 

storage volume of 1,000 litres was combined with heat 

pump capacities of 7, 10, and 5 kWTH respectively. The 

average flexibility offered to the grid amounted to 89%,  

87%, and 76%. Only the 10kW550L combination 

achieved 100% flexibility potential for all three days. 

However, this resulted in the highest operational cost. 

When comparing overall operational costs with the load-

following reference case, it appears that savings could 

only be achieved for the day with the lowest share of 7% 

wind generation. Cost reductions of 6.6% and 1.4% were 

achieved for scenarios 7kW1000L and 5kW1000L. On 

one hand, the reference case was 8% more economical to 

run than the lowest cost scenario GET5kW1000L over the 

simulated three-day period. On the other hand, no 

flexibility was offered to the grid and the study neglects 

the fact that energy remained in the TES, which was 

discarded at the end of each day.  

Larger storage volumes tend to offer higher flexibility 

at low cost because TES temperatures increase slower 

with increasing energy content than with smaller TES 

volumes. Therefore, system performance can benefit from 

higher COPs. Higher heat pump capacities allow for more 

heat to be stored during a given low-cost interval. 

Therefore, they offer a higher degree of flexibility. 

However, the increased amount of stored heat increases 

TES temperature and reduces the COP. This results in the 

increased need for electricity and thus higher cost for 

flexibility. In this study, the heat pump was modelled as 

an on/off system with binary decision variables. The use 

of a variable speed heat pump could enhance economic 

storage utilisation and should be considered during 

Table 1.  The share of electric load shifted from restrictive periods, associated operational cost and resulting flexibility cost 

indicator  

 5kW550L 5kW800L 5kW1000L 7kW550L 7kW800L 7kW1000L 10kW550L 10kW800L 10kW1000L 

Flexibility Potential 

04/12 33% 85% 100% 82% 85% 100% 100% 68% 82% 

05/12 45% 45% 55% 79% 67% 67% 100% 68% 78% 

06/12 48% 75% 73% 48% 75% 100% 100% 73% 100% 

Cost 

04/12 €3.77 €3.14 €2.81 €3.87 €3.17 €2.66 €7.47 €3.97 €3.15 

05/12 €3.05 €2.81 €2.74 €5.59 €3.25 €3.08 €7.58 €3.45 €3.15 

06/12 €2.44 €2.31 €2.25 €3.10 €2.53 €2.43 €5.78 €2.71 €2.48 

Flexibility Cost Indicator (FCI) 

04/12 0.09 0.27 0.36 0.21 0.27 0.38 0.13 0.17 0.26 

05/12 0.15 0.16 0.20 0.14 0.21 0.22 0.13 0.20 0.25 

06/12 0.20 0.32 0.33 0.15 0.29 0.41 0.17 0.27 0.40 

Mean FCI 0.14 0.25 0.29 0.17 0.26 0.34 0.15 0.21 0.30 

Fig. 6.  Optimal schedule for different TES and HP capacity 

combinations on the 7% REFEL day 
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system design. A variable speed heat pump, modelled 

with integers as decision variables, would enable the 

system to reduce its output as required, but increases the 

computational complexity of optimisation. Assuming ten 

increments of 10% capacity, the number of permutations 

for optimisation would be increased by an order of 

magnitude of 17 (1024 instead of 224). The results suggest 

that the ideal design combination of heat pump and 

storage depends on the heat demand profile, electricity 

price elasticity, optimisation horizon and whether a 

variable speed heat pump is considered. 

 

4.3 General observations and limitations 

Table 2 summarises the increased use of renewable 

electricity, renewable energy fraction of heat, and cost 

implications when compared with the load-following 

reference scenario. Shown are the results for this study’s 

best performing combination of 7 kWTH heat pump with 

1,000 litre TES. The share of utilised renewable electricity 

is increased by 6.7% and 3.1% for the low and high wind 

days respectively. For the medium wind day, it slightly 

decreases by 1.8%. Operational cost is decreased only for 

the low wind day by 5.8% and increased for medium and 

high wind days by 35.2% and 18% respectively. 

However, the calculated savings in this study heavily 

depend on the electricity base rate that was assumed to be 

€0.10 per kWh. Increasing this base rate would lead to 

more price elasticity and increased cost savings. The share 

of delivered renewable heat (REFTH) in all cases ranges 

from 67.9% to 88.5%. A more renewable electricity 

supply will further increase this fraction. The share of 

renewable heat decreases from the load-following 

reference scenario. The largest reduction of 6.4% occurs 

on the day with the smallest share of wind electricity and 

similarly for the medium wind day. On the high wind day, 

the share is reduced by only 1.9% as the share of 

renewable electricity is large throughout the day. 

                                                           
2 Intel® Core™ i3-6100U CPU @2.3GHz and 8GB RAM on a 

64-bit Windows 10 Pro OS 

 The simulation time frame was only three days. The 

TES retained a charge of 4-10 kWh at the end of each day, 

which would normally be used during the next 

optimisation horizon. This is not factored into the results 

of this study and explains the increased cost and decreased 

REFTH, especially in the context of the short modelling 

period. Thus, a longer simulation time-frame will result in 

this energy being used and the optimal control to be more 

economic as shown in previous work [9]. 

In this study, optimisation was performed at the 

beginning of the 24-hour optimisation horizon. In a 

practical system, a rolling optimisation with a receding 

horizon would enable the reaction to updated system 

information and forecasts. The uncertainty of wind energy 

generation and temperature forecast is smaller for near 

future events than for distant future events. Thus, the 

effect of prediction uncertainty can be mitigated by 

frequent optimisations. 

The reaction to changing electricity prices could be 

realised within several minutes depending on the 

optimisation run-time that effectively limits its frequency. 

Day-ahead electricity prices limit the time scale of 

flexibility to approximately one day. Availability of price 

data for longer optimisation horizons could increase the 

ability of the local system to help the grid experiencing a 

short ‘Dunkelflaute’, a period where no electricity can be 

obtained from wind and solar. Increased foresight 

regarding electricity prices could enable multi-day 

flexibility. Longer prediction horizons mean increased 

prediction uncertainty. Therefore, rolling optimisation 

with regularly updated forecasts should be used to 

mitigate adverse effects from prediction error. Longer 

optimisation horizons and higher resolution also mean 

that simulation and optimisation require longer run-times. 

Finally, the selected minimum storage temperature 

significantly affects the coefficient of performance of the 

heat pump. Utilising low-temperature heat emitters such 

as underfloor heating, fan-assisted radiators or air-

conditioning can be expected to enhance system 

performance further. Thus, heat distribution system 

design impacts on both the potential of GET Smart Heat 

and sensitivity of models to system design. 

4.4 Optimisation performance 

Globally optimal results are obtained for each modelled 

day and all HP and TES capacity combinations by 

exhaustive enumeration. This means that all possible 

decision variable permutations are calculated to find the 

global optimum heat pump schedule, which satisfies the 

heat demand at the lowest operational cost. For each day, 

an average runtime of 36 minutes and 40 seconds was 

noted2. Subsequently, all scenarios were optimised using 

a Python-based genetic algorithm to benchmark run-time 

and optimisation error. Limiting the maximum number of 

trials to 5000 yielded satisfactory results after a run-time 

of 58 seconds, which represents 2% of the duration of the 

exhaustive enumeration method. The schedules obtained 

Table 2.  Summary of increased use of renewable electricity, 

the share of delivered renewable heat and operational cost 

when comparing optimal GET control (7kW1000L) to the 

load-following reference case 

 4/12/2017 5/12/2017 6/12/2017 

Fraction of renewable electricity used 

LF 6.7% 24.4% 60.7% 

GET 7.4% 24.0% 62.6% 

Change 10.1% -1.8% 3.1% 

Fraction of renewable heat supplied REFTH 

LF 72.5% 77.7% 88.5% 

GET 67.9% 73.0% 86.9% 

Change -6.4% -6.2% -1.9% 

Operational Cost 

LF €          2.85 €        2.29 €        2.06 

GET €          2.68 €        3.10 €        2.43 

Change -5.8% 35.2% 18.0% 
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by GA optimisation are in most cases identical to the 

global optimum schedules and resulted in a maximum 

optimisation error of 0.7%. In two cases a small difference 

in schedule resulted in an error of approximately 0.2%. 

While these results are very promising in terms of run-

time and convergence to near-global optima, multiple GA 

optimisations of the same scenario should be run to 

establish the mean optimum and standard deviation with 

statistical significance. 

5 Conclusions  

Flexibility is a key component of future demand-respond 

energy systems. It is a requirement for the integration of 

large shares of renewable energy and for the 

electrification of heating and transport. Part of this 

flexibility can be offered by buildings’ HVAC systems. 

This study explores the flexibility potential of a heat pump 

and thermal energy storage as a grid-edge technology. 

Automated implicit demand response can offer flexibility 

to the grid while enabling operational cost reductions to 

benefit the consumer. Demand flexibility helps to 

accommodate fluctuations in daily wind generation and to 

balance grid bottlenecks. This facilitates the 

electrification of heat, the integration of more fluctuating 

renewable electricity sources, and thus the 

decarbonisation of the energy system in a cost-effective 

manner. Furthermore, air-pollution and CO2 emissions are 

reduced both at a local and at a national level. Nodal real-

time pricing schemes could mitigate congestion problems 

at distribution level scale. However, as there is no firm 

commitment of the consumer to react to price signals, 

increasing consumer participation will demonstrate and 

help quantify the predictability and reliability of implicit 

demand flexibility. 

The flexibility potential considered in this study was 

quantified as the share of energy moved from above-

average price periods to low-cost periods. Depending on 

system design and the electricity cost profile, 33-100% of 

electric loads could be shifted from restrictive periods to 

times of more favourable grid conditions. The results 

indicate that the flexibility potential and operational cost 

are sensitive to system design, i.e. heat pump power and 

storage capacity. The flexibility cost indicator FCI was 

introduced to compare different HP and TES 

combinations for their ability to offer benefits both to the 

grid and to the consumer. It is the ratio of flexibility to 

operational cost. In this study, a 7 kWTH heat pump 

coupled with 1,000 litres of sensible thermal energy 

storage yielded the best flexibility to cost ratio. The FCI 

may lend itself to the design for grid flexibility of heat 

pump and storage systems, which need to be tailored 

according to heat demand profile, electricity price 

volatility, optimisation horizon, and type of heat pump.  

The genetic algorithm considered in this study yielded 

near-optimal results with an error smaller than 1%. This 

was achieved almost 40 times faster than with the 

exhaustive search. Further research should verify the 

statistical significance of optimisation error and run-time. 

This study was explorative as the simulation spanned only 

three days. The observed trends will be further verified by 

simulating the system for an entire heating season with 

rolling optimisations. Variable speed heat pumps will be 

considered to investigate what effect they have on 

flexibility and operational cost, and further on 

optimisation run-time and accuracy of the meta-heuristic 

optimisation.      

A key requirement to achieve residential demand-side 

flexibility on the grid-edge is the introduction of real-time 

pricing coupled with automatic real-time optimisation. 

The roll-out of smart meters and real-time electricity 

tariffs should be accelerated, as mandated by the 

European Commission. This will support the 

decarbonisation and electrification of heat, towards a 

smart energy system. 

6 Abbreviations 

ASHP air source heat pump 

COP coefficient of performance 

FCI flexibility cost indicator 

GA genetic algorithm 

GET grid edge technology 

HP heat pump 

HVAC heating, ventilation, air conditioning 

LF load following 

P2H power-to-heat 

REFEL renewable energy fraction electricity 

REFTH renewable energy fraction thermal 

RTP real-time pricing 

SOC state of charge 

SMP system marginal price 

TES thermal energy storage 

7 Acknowledgements 

This research is funded by the Irish Research Council 

under the Government of Ireland Postgraduate 

Programme GOIPG/2018/2916. 

8 Bibliography 

1. D. Connolly, H. Lund, B.V. Mathiesen, Renew. & 

Sust. Energ. Rev., 60, pp.1634–1653, (2016). 

2. P.D. Lund, J. Lindgren, J. Mikkola, J. Salpakari, 

Renew. & Sust. Energ. Rev., 45, pp.785–807, (2015). 

3. S.Ø. Jensen, A. Marszal-Pomianowska, R. Lollini, 

W. Pasut, A. Knotzer, P.Engelmann, A. Stafford, G. 

Reynders, Ener. & Build., 155, pp.25-34, (2017). 

4. ESB, Ireland’s low carbon future - Dimensions of a 

solution, (2017). 

5. Accenture, Flex and Balances, (2018). 

6. X. Yan, Y. Ozturk, Z. Hu, Y. Song, Renew. & Sust. 

Ener. Rev., 96, pp.411–419, (2017). 

7. World Economic Forum, The Future of Electricity: 

New Technologies Transforming the Grid Edge, 

(2017). 

8. A. Bloess, W.P. Schill, A. Zerrahn, Appl. Ener., 212, 

pp.1611–1626, (2018). 

9. C. Schellenberg, J. Lohan, L. Dimache, Therm. 

Science, 22(5), pp.2189–2202, (2018). 

10. SEDC, Explicit and Implicit Demand-Side 

Flexibility, (2016). 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/20191110609)
201

E3S 111
CLIMA 9

6002 02

8

http://10.0.3.248/j.rser.2016.02.025
http://10.0.3.248/j.rser.2016.02.025
http://10.0.3.248/j.rser.2015.01.057
http://10.0.3.248/j.rser.2015.01.057
https://doi.org/10.1016/j.enbuild.2017.08.044
https://doi.org/10.1016/j.enbuild.2017.08.044
https://doi.org/10.1016/j.enbuild.2017.08.044
https://www.esb.ie/docs/default-source/default-document-library/ireland-39-s-low-carbon-future---dimensions-of-a-solutione50a5f2d46d164eb900aff0000c22e36.pdf?sfvrsn=0
https://www.esb.ie/docs/default-source/default-document-library/ireland-39-s-low-carbon-future---dimensions-of-a-solutione50a5f2d46d164eb900aff0000c22e36.pdf?sfvrsn=0
https://www.accenture.com/t20181012T090340Z__w__/us-en/_acnmedia/Accenture/Conversion-Assets/DotCom/Documents/Global/PDF/Dualpub_26/Accenture_Flex_Balances_POV.pdf#zoom=50
https://doi.org/10.1016/j.rser.2018.08.003
https://doi.org/10.1016/j.rser.2018.08.003
http://www3.weforum.org/docs/WEF_Future_of_Electricity_2017.pdf%0Ahttps:/www.weforum.org/reports/the-future-of-electricity-new-technologies-transforming-the-grid-edge
http://www3.weforum.org/docs/WEF_Future_of_Electricity_2017.pdf%0Ahttps:/www.weforum.org/reports/the-future-of-electricity-new-technologies-transforming-the-grid-edge
http://www3.weforum.org/docs/WEF_Future_of_Electricity_2017.pdf%0Ahttps:/www.weforum.org/reports/the-future-of-electricity-new-technologies-transforming-the-grid-edge
https://doi.org/10.1016/j.apenergy.2017.12.073
https://doi.org/10.1016/j.apenergy.2017.12.073
https://doi.org/10.2298/TSCI171231272S
https://doi.org/10.2298/TSCI171231272S
http://www.smarten.eu/position-papers-reports
http://www.smarten.eu/position-papers-reports

