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Abstract. In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to 

nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the 

nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions 

(climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to 

possible variations of future scenarios, especially as regards the climate change. This work applies the new 

EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the 

Authors aiming at investigating the variation of the cost-optimized multi-family building design in different 

Italian future climate scenarios, therefore considering parameters related to the building envelope, energy 

systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), 

GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal 

solutions in future scenarios are related to a lower global cost and a decreased total primary energy 

consumption. Beyond the future trends of such performance indexes, the fact that most of technical 

solutions associated with the optimal solutions have not changed with the studied climate scenarios, 

indicates a certain resilience of the optimal design variables facing climate change. 

1 Introduction  

Being the main responsible for energy consumption in 

Europe, the building sector has great potential for 

optimization and improvement in energy and cost-related 

terms [1]. 40% of European primary energy consumption 

involves residential and non-residential buildings [2]. 

This fact led the European Commission to take action on 

the matter with the Energy Performance of Building 

Directive (EPDB) and its recasts, promoting some 

guidelines on the energy efficient design and innovation 

of buildings with the aim of defining a roadmap towards 

the decarbonization of the European building stock, 

achieving the nZEB (nearly Zero Energy Building) 

objective [3]. In this context, the first EPBD recast 

foresees the implementation of innovative energy 

efficiency measures in order to reduce the energy needs 

of buildings as well as their maintenance costs over the 

short, medium and long term [3]. 

Furthermore, the 2018 EPBD recast put forward that 

energy efficiency measures should not just be focused on 

the building envelope components, but also consider 

technical systems, taking into account both the energy 

consumption side and the economic aspect of such 

measures. In order to propose a model of sustainable 

development, the economic assessment must be taken 

into account, so as to propose possible tangible solutions 

that can be implemented [4]. 

Many of the possible technologies that emerged in 

recent years to achieve the nZEB target, while being 

energy-efficient, are not as promising on the economic 

side. To promote the development of economically 

feasible solutions, the EPDB has introduced the cost-

optimal methodology, a framework adopted by both the 

Member States and the scientific community that aims to 

find cost-effective design solutions for energy saving [5, 

6]. 

The cost-optimal methodology requires comparing 

possible combinations of energy efficiency measures to 

determine which of them has the lower economic impact 

over the building economic lifecycle. The solution to this 

problem is nothing other than the search of the minimum 

of an objective function, the so-called Global Cost 

function, therefore constituting a complex optimization 

problem. 

In this perspective, such optimization process 

acquires significant importance in the preliminary phase 

of designing new buildings, being able to provide a set 

of energy-performing solutions with the highest level of 

feasibility [7,8]. Furthermore, an ever-increasing amount 

of optimization variables reveals the need for appropriate 

simulation-based optimization strategies that are able to 

search within a great number of design solutions of 

which the performance needs to be evaluated in detail. 

Within the so-defined optimization problem, one 

aspect to take into consideration is certainly the 

relationship between the many optimization variables 

and the boundary conditions, such as climate data, the 

available technologies, the market context, etc., which 

are subject to uncertain future evolution [9]. Considering 
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different future scenarios may lead to significant 

variations in the optimal design solutions, but this 

approach is not included in the cost-optimal framework 

for nZEB design proposed by the EPDB recast, which 

only proposes a sensitivity analysis based on financial 

data. However, recent scientific research confirmed that 

future energy consumption will be strongly influenced 

by climate change [10,11]. This problem has already 

been addressed by many studies focused on the 

prediction of climate models, based on the 

Intergovernmental Panel of Climate Change predictions 

[12]. A first application of climate scenarios within the 

cost-optimal methodology can be found in [13] for a 

simple single-family building, but it is an open issue that 

has to be addressed for more complex case-study 

buildings in different contexts. 

The integration of the cost-optimal methodology with 

future climate scenarios results in a very challenging 

topic in line with the last provisions of the second EPBD 

recast, because it aims to find economically sustainable 

solutions that take into account the weather evolution in 

the future.  

By adopting this research methodology, more reliable 

solutions can be achieved to guarantee a building design 

that is resilient to climatic variations, leading to more 

effective long-term strategies towards the nZEB 

objective. 

1.1 Aim of the present study 

This study aims to investigate the effects of global cost 

optimization performed on a real case study subjected to 

different future climate scenarios, for the period 2026-

2045. The analysis contained in this paper made it 

possible to compare the results obtained with those 

produced by the actual climate situation (reference 

weather condition). The optimization process was 

developed through a new EDeSSopt (Energy Demand 

and Supply Simultaneous Optimization) framework [14] 

able to simultaneously optimize parameters related to the 

building envelope, energy supply systems and renewable 

sources. The purpose of this investigation is to explore 

the influence of future climate scenario in the 

relationship between energy demand and supply in a 

simulation-based optimization framework. In particular, 

there are two primary objectives of this study:  

1. To define energy efficiency measures and future 

climate scenarios for the design optimization of a multi-

family building in the Italian context; 

2. To study the resilience of the optimal solution with 

respect to changes in climatic conditions 

Several future climate scenarios in this respect have been 

applied to the same case study to assess the energy 

impact on the building. 

In this work, the dynamic energy behaviour of the 

building was studied with TRNSYS® while the 

GenOpt® software was used to perform the optimization 

task. 

 
Nomenclature  

ResR Thickness of insulation in the roof 

Res2 Thickness of insulation in the first floor 

ResO-N Thickness of insulation in the wall 

facing North 

ResO-EWS Thickness of insulation in the walls 

facing East/West/South 

WTN North windows type 

WTS South windows type 

WTEW East/West windows type 

WFactor Windows area increasing factor 

T-Gen Generator type 

T-Ter Terminals type 

T-Aux Auxiliary heater type 

T-PV PV type 

Perc-PV Percentage of PV installed 

Perc-TH Percentage of solar thermal installed 

Dim-WS Water storage dimension 

2 Methodology  

2.1. Case study building and optimization 
variables  

The case study building is a 6-floors residential complex 

located in Milan, Italy. For the purpose of this study, a 

portion of the complex including 35 residential 

apartments for a total heated surface of about 2460 m2 

was considered. The opaque envelope of the building is 

made of reinforced concrete and bricks with an 

insulation layer on the outside side. The global 

transmittance of the wall is equal to 0.26 W/m2K. The 

glazed elements consist of double glazing with a metal 

frame and their total transmittance value is 1.45 W/m2K. 

In the study presented in this paper, the optimization 

variables adopted concern the building envelope, 

technical systems and renewable energy technologies. 

Different configurations of these types of variables were 

simulated to minimize the global cost. 

4 optimization variables were taken into account for 

the opaque building envelope: the thickness of the 

insulation in the roof (ResR), in the external walls facing 

North (ResO-N), in the external walls towards other 

orientations (ResO-EWS) and in the floor of the first 

floor (Res2). For the transparent components, three 

variables were considered to describe the orientation of 

the windows: North (WTN), South (WTS) or East/West 

(WTEW). Each of these variables can be represented by 

5 types of selected windows: three types with double 

glazing and two types with triple glazing (Table A.2 in 

the Appendix). An additional variable (WFactor) 

considers a possible variation in the transparent surfaces 

of ±20% compared to the building design conditions. 

Regarding the technical system, the optimization 

variables include the choice of the heat generator (T-

Gen), the heating terminals (T-Ter), the auxiliary heaters 

(T-Aux), the photovoltaic panels (T-PV), the size of the 

thermal storage (Dim-WS) and the percentage of 

renewable resources installed in the building (Perc-PV 

and Perc-TH). More details on optimization variables are 

collected in Table A.3 in the Appendix. 

The so-defined optimization problem has therefore a 

15-dimensional design space composed of 3·1013  

possible design solutions, a value that underlines the 

importance of implementing an optimization algorithm, 
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such as the Particle Swarm Optimization (PSO), in order 

to minimize the objective function. The PSO algorithm 

is a heuristic search method that optimizes a problem 

using a population of candidate solutions. By studying 

the displacement of populations in the solutions space, 

this algorithm tries to converge towards a local minimum 

implementing specific logic inspired by swarm 

movement. This algorithm has been proved to be 

effective in cost-optimal studies [15]. 

2.2 The global cost function  

The technical-economic analysis is the main objective of 

this optimization study, where the objective function is 

the global cost. The objective function, reported in 

equation (1), takes into account both the initial 

investment costs, as well as the operational and 

maintenance costs. The purpose of cost-optimal analysis 

is to minimize the overall cost, calculated according to 

the European Standard EN15459 [16]. In the global cost 

function, CI represents the initial investment cost of the 

system, Ca, j(i) the cost related to the correct operation 

and maintenance of the component j during the year i 

and Rd(i) is discount rate for the year i (set at 4.5%). The 

calculation period τ  has been set equal to 30 years. 

Finally, the term Vf(j) represents the economic value of 

each component j at the end of the calculation period. 

 CG (τ ) = CI + Σj [Σi=1 (Ca,j (i) * Rd (i)) - Vf,τ  (j)]  (1) 

For each component j that are the optimization 

variables presented above, specific cost functions were 

assessed to evaluate the related investment and O&M 

costs. For more details on cost functions, refer to tables 

A.1, A.2 and A.3 in the Appendix. 

In addition to the global-cost function, the simulation 

software also evaluates other secondary functions useful 

for understanding the energetic behaviour of the 

simulated scenario. For instance, the total primary 

energy of the building EPtot is evaluated, considering the 

conversion factor proposed by the Italian standards [17]. 

2.3 The EDeSSOpt methodology  

The optimization process of the cost-optimal function 

has been developed through the coupling of TRNSYS®, 

a dynamic energy simulation software, with the 

GenOpt® optimization program, in a so-called 

simulation-based optimization approach. The innovative 

methodology proposed in solving this problem consists 

in a simultaneous optimization of the energy demand and 

supply (EDeSSOpt) of the case study building. The 

optimization procedure is therefore not separated in two 

or more phases as in more traditional optimization 

processes, where the global cost is first optimized for the 

energy demand side and then from the supply point of 

view [18]. The EDeSSOpt methodology allows to 

evaluate the economic impact that an optimization 

variable has on a given energy production system. For 

example, with this approach it is possible to evaluate 

how convenient it is to modify a building envelope 

parameter rather than a heat generator. 

The optimization process is initialized by GenOpt, 

which assigns a random value to the input variables. 

These optimization variables, together with the boundary 

conditions of the problem (case study geometry and 

climate) are transmitted to TRNSYS which simulates the 

energy behaviour of the building in those conditions, 

calculating the value of the global cost function. Once 

the energy simulation is terminated, GenOpt evaluates 

the result of the objective function and, based on PSO 

algorithm, modifies the values of the optimization 

variables that are used to launch a new simulation in 

TRNSYS. This iterative process is repeated until the 

termination criterion, set to 100 generations, is reached. 

2.4 Future climate scenarios 

The Milan-IWEC weather file was used as a reference 

scenario, denoted by RW. Starting from it, according to 

the climate change forecast foreseen by the IPCC Fifth 

Assesment, future weather files were generated using 

WeatherShift® software tool [19]. 

Future weather projections were generated using the 

morphing method implemented in the software [20]. The 

generated scenarios take into account two climate 

factors. The Representative Concentration Pathways 

(RCP) is a factor used to determine future scenarios by 

assuming a trend in greenhouse gas emissions. Two RCP 

scenarios were considered: the 4.5-moderately 

aggressive mitigation and the 8.5-business as usual, 

which refer to an increase in solar radiation of 4.5 W/m2 

or 8.5 W/m2 by 2100, respectively. 

To generate a future climate file, WeatherShift® 

calculates the offsets of each member of a set of climate 

projections. Using the warming percentile (WP) factor, 

the software indicates the percentage of available climate 

models that lead to an offset temperature lower than or 

equal to the one considered in the scenario. 

For the case study in question two different climate 

scenarios were generated referring to the period 2026-

2045, both with a WP equal to 95% and an RCP of 4.5 

and 8.5, respectively. These futures scenarios have been 

compared with the reference weather file (RW). Figure 1 

shows the heating degree days (HDD) and the cooling 

hours (CH) for the three scenarios, according to 

equations (2) and (3). The reference temperature for the 

calculation of the HDD has been set at 18 °C, while in 

the evaluation of the CH it is equal to 26 °C. 

 

 

  HDD = Σi=1,365(Tref-Tmean) = Σi=1,365(18-Tmean)  (2) 

 

 

  CH = ΣT
out

≥T
ref

 (Tout-Tref) = ΣT
out

≥26(Tout-26)  (3) 

 

 

Figures 2 and 3 show the trend of external 

temperatures in the three scenarios during the warmest 

days of summer (Figure 2) and the coldest ones in winter 

(Figure 3). If compared to the RW, the two climate 

scenarios evaluated with WeatherShift® have a very 

similar trend, with an average temperature increase of 
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about 3 °C in the considered winter days and over 5 °C 

in the reported summer days. 

 

Fig. 1. Heating degree days and cooling hours. 

 

Fig. 2. Summer warmest days. 

 

Fig. 3. Winter coldest days. 

3 Results and discussion 

The case study building was optimized in the three 

climate scenarios presented. The two future scenarios for 

the period 2026-2045 results led to similar results, which 

are quite different from the actual reference climate 

scenario (RW). The global cost, which represents the 

objective function to be minimized, has a value of 

206.53 €/m2 for the RW while it is lowered to 203.60 

€/m2 and 202.00 €/m2 for the future scenarios 

respectively with RCP 4.5 and RCP 8.5. A similar 

behaviour is represented by the value of the primary 

energy related to the optimal solution, which also 

decreases in the future scenarios. The value of 88.53 

kWh/m2 of the reference weather goes down to 73.21 

kWh/m2 and 72.02 kWh/m2 respectively for the RCP 4.5 

and RCP 8.5 scenarios. 

Globally, the obtained results seem to describe a 

slight decrease in the overall cost of the case study 

building in future climate projections. On the other hand, 

from the primary energy point of view, the decrease is 

considerable. 

The cost-optimal cloud as a function of the primary 

energy needs for all the simulations performed (about 

1000 simulations for each climate scenario) is shown in 

Figure 4. The optimal solutions have been highlighted by 

the larger dots in the figure. It can be noted how the 

optimal solutions in the 2026-2045 scenarios differ from 

the actual one (RW), reporting lower values of both CG 

and EPtot. 

 

Fig. 4. Cost-optimal cloud for the three scenarios. 

The sets of parameter values that correspond to the 

optimal solutions of each scenario are collected in Table 

1. Next to the value of each parameter, its relative 

frequency in the neighbourhood of the optimal solution 

is reported. The optimum neighbourhood is a subset of 

points that was identified considering all the solutions 

that led to an objective function value not higher than 

3.5% compared to the optimal value. The percentage of 

the relative frequency indicates how many times the 

value of the associated variable occurs within the 

neighbourhood. A high percentage value indicates the 

stability of the variable around the optimal solution, 

confirming a certain resilience of that parameter. Figure 

5 shows the points enclosed in each neighbourhood of 

the three optimal solutions. It is interesting to note how 

the optimal solution relative to the RW falls within the 

neighbourhood of the optimal solutions for future 
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scenarios. What clearly distinguishes the reference 

weather optimal solutions is the total consumption of 

primary energy, which is relatively higher compared to 

future scenarios.  

 

Fig. 5. Neighbourhood clouds. 

The analysis of the results shows considerable stability 

for the parameters related to energy systems. All the best 

solutions have been identified with the same design 

choices in terms of power generation systems (primary 

and auxiliary), distribution terminals, thermal storage 

sizing and choice of photovoltaic panels. It can be also 

noticed how these plant parameters present a relative 

frequency in the neighbourhood always close to 100%, 

indicating a strong stability within the optimum 

neighbourhood and a considerable resilience to the 

uncertain variation of climate scenarios. 

On the other hand, by shifting the attention on the 

parameters characterizing the building envelope, 

different optimal solutions were found in the thermal 

resistances of the opaque walls, whose value decreases 

in the future climate scenarios. The climate change 

foreseen by the projections has therefore a greater 

influence on these parameters. This impact is further 

confirmed by the lower relative frequencies of the same 

parameters, which never exceed 90%. 

A different analysis can finally de done considering 

the impact of the energy produced through the PV 

panels, represented by the variable Perc-PV (percentage 

of the available roof area covered by photovoltaic 

panels). This parameter significantly undergoes climate 

change and its optimal value increases by 40 percentage 

points from the actual scenario to the future ones. This 

result suggests a future positive impact for photovoltaic 

installations that at the moment may seem over-sized. 

This outcome might be a consequence of the greater 

electricity consumption in the future, especially due to 

an increase in the energy demand for the air conditioning 

of buildings, as had already been identified in Figure 1, 

where the cooling hours for future scenarios showed 

values significantly higher than the current ones.Table 1 

also contains the energy need for heating (QH,nd) and 

cooling (QC,nd) of the building corresponding to the 

optimal design solutions in all scenarios. These values 

indicate the impact that the climate projections will have 

on seasonal consumption of optimally designed 

buildings.  

 

Table 1. Optimal set of variables values and relative 

frequency. 

Scenario OPT_RW OPT_8.5-95 OPT_4.5-95 

Parameter 
Variable 
value 

Relative 

Frequency 
(neighbour

hood) 

Variable 
value 

Relative 

Frequency 
(neighbou

rhood) 

Variable 
value 

Relativ

e 
Frequen

cy 

(neighb
ourhoo

d) 

ResO-N 

[(m2K)/W] 
1.7165 54% 1.1455 71% 1.1455 63% 

ResO-EOS 

[(m2K)/W] 
1.7165 44% 1.1455 71% 1.1455 83% 

Res2 
[(m2K)/W] 

0 89% 0 88% 0 85% 

ResR 

[(m2K)/W] 
0.6095 30% 0 89% 0 87% 

WTS 

Double 

glazing, 

low-E, 
with 

Argon 

93% 

Double 

glazing, 

low-E, 
with 

Argon 

92% 

Double 

glazing, 

low-E, 
with 

Argon 

92% 

WTN 

Double 

glazing, 
low-E, 

with 

Argon 

93% 

Double 

glazing, 
low-E, 

with 

Argon 

92% 

Double 

glazing, 
low-E, 

with 

Argon 

92% 

WTEW 

Double 

glazing, 

low-E, 
with 

Argon 

88% 

Double 

glazing, 

low-E, 
with 

Argon 

78% 

Double 

glazing, 

low-E, 
with 

Argon 

69% 

WFactor [-] 0.8 98% 0.8 98% 0.8 97% 

T-Gen 
Heat 

pump 
100% 

Heat 

pump 
99% 

Heat 

pump 
100% 

T-Ter Fancoils 100% Fancoils 100% Fancoils 100% 

T-PV 
Polycrys

talline 
99% 

Polycrys
talline 

100% 
Polycryst

alline 
100% 

Dim-WS 

[l/m2] 
100 97% 100 97% 100 97% 

T-Aux Gas 100% Gas 100% Gas 100% 

Perc-PV 

[%] 
36 59% 76 51% 76 47% 

Perc-TH 

[%] 
11 91% 11 89% 11 89% 

CG [€/m2] 206.53 202.00 203.60 

EPtot 
[kWhEp/m2] 

88.52 72.02 73.21 

EPnren 

[kWhEp/m2] 
68.10 61.02 61.78 

QH,nd 

[kWh/m2] 
22.79 18.41 19.57 

QC,nd 

[kWh/m2] 
9.34 19.69 19.33 

 

The winter heating demand will tend to decrease, while 

the energy spent for summer air conditioning will double 

if the scenarios of 2026-2045 are considered. This shift 

in energy requirements is also highlighted in Figure 6, 

which depicts the trends described above for the 

simulated scenarios. The future projections of the energy 

need in buildings reflect the trends already analysed in 

Figure 1 for the heating degree days and the cooling 

hours. Following the results obtained, it is clear that 

summer air conditioning will engage more and more 
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interest in the design of energy efficient future HVAC 

systems [22-23]. 

 

Fig. 6. Energy needs actual and future trends for optimal 

solutions. 

4 Conclusion 

The cost-optimization of a residential complex located in 

Milan, Italy, was carried out using future climate 

scenarios for the period 2026-2045 and comparing the 

results obtained with the current weather conditions. 

The new EDeSSOpt optimization methodology has 

been applied to the case study, integrating in the same 

optimization algorithm both the energy demand and 

supply characteristics that define the building. 

The purpose of this study was a resilience analysis of 

both envelope and systems parameters of the case study. 

The results obtained have shown how systems that 

involve heat pumps integrated with an auxiliary gas 

generator and fan coils as distribution terminals turn out 

to be an optimal solution both in terms of cost and in 

terms of resilience to possible climatic variations. As 

expected, the effects of climate projections could lead to 

a reduction in winter energy need for heating, whereas 

the energy need for summer air conditioning will tend to 

increase. For this reason, the analysis carried out shows 

how the thermal resistances of building envelope 

components resulting in the cost-optimal solution 

decrease in future scenarios. 

Future developments of the study presented in this 

paper can be conducted considering future possible 

climate scenarios or implementing new variables in the 

optimization algorithm. A more detailed application of 

the methodology proposed can ultimately enable targeted 

design decisions to be made, having a significant impact 

in the cost-optimization of future projects. 
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Appendix A. Optimization variables and 
cost functions 

Table A.1. Envelope variables and related cost functions 

Parameter Description Unit Min Max Step 
Cost function 

[€/m2] 

ResO-N 

ResO-

EOS 
Res2 

Thermal 

resistance of 

opaque 
components 

m2K

W
 

 

1,143 5,714 2 cm 4,97*ResO+3,36 

ResR 
Thermal 

resistance of 

roof 

m2K

W
 1,212 6,061 2 cm 5,775*ResR+2,6 

WTS 

WTN 

WTEW 

Window 
type 

[-] 1 4 1 See table A.2 

 

Table A.2. Windows types and related cost functions 

Window 

type 
Description Composition 

UW 

[W/(m2K)] 

g-

value 

Cost 

[€/m2] 

1 
Double glazing, 

w/o Argon 
4/16/4 2,83 0,755 166,6 

2 
Double glazing, 

low-E, with Argon 
4/15/4 1,1 0,609 179,85 

3 
Double glazing, 
low-E and solar 

control, with Argon 

6/16/6 1,29 0,333 220,81 

4 
Triple glazing, low-
E and solar control, 

with Argon 

6/12/4/12/4 0,7 0,294 266,41 

5 
Triple glazing, low-

E, with Argon 
4/16/4/16/4 0,7 0,501 217,19 

 

Table A.3. Technical components and related cost functions 

Technical component Design variable Cost [€] 

Traditional boiler Thermal power Pth 17.283*Pth+1282.2 

Condensing boiler Thermal power Pth 43.515*Pth+2634 

Air cooled chiller Cooling power Pco 139.22*Pth+3014.2 

Water cooled chiller Cooling power Pco 73.298*Pth+4239.3 

Heat pump Cooling power Pco 579.21*Pf
0.6535 

Thermal storage (1 HX) Storage volume Vts 1.18*Vts+1266.7 

Thermal storage (2 HX) Storage volume Vts 1.76*Vts+1579.8 
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