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Abstract. The article presents a mathematical model for the phenomenon 
of fatigue accumulation in the slender bar subjected to lateral bending. The 
model is based on the Euler-Bernoulli type bar, a bi-linear elastic-plastic 
model and, for simulation of fatigue, a system of equations describing the 
decrease resistance parameters of the material: the ultimate strain and stress. 
In the article is exposes the bar response to two types of dynamic loads, as 
well as a fatigue test simulating process using the proposed model, which 
results in the Wöhler diagram of the material for the bending vibrations. The 
conclusions outline the outlook of the model as well as its shortcomings. The 
author expounds the advantages of the model, but the reader is also 
challenged to reflect on the opportunity of using mathematical models of 
great complexity. 

1 Introduction  

Mathematical modelling in the field of material fatigue occupies a central place in the 
literature dedicated to this problem. Starting from the elementary mathematical model of the 
S-N curve, also known as Wöhler curve, [1], up to contemporary mathematical models based 
on differential equations and partial and even more complicated derivatives, [2-5], [8-11], 
the purpose of mathematical modelling in this area was to predict the ceding of materials or 
to specify a period of time during which the material will not yield under certain conditions, 
or will yield with a very low probability.  

The model presented in these article attempts, with simple means, to adapt to the problem 
of materials fatigue, mathematical models developed to simulate the memory of materials or 
mathematical models of materials that change their qualities during operation, [6-7]. The 
results presented in this article represent a stage of development towards models that consider 
two-dimensional and three-dimensional structures.  It is also the application of the model in 
structural analysis programs that work through different numerical methods. 

2 Problem Formulation 

The subject of this article is to model the fatigue of bars subjected to transverse vibrations. 
For this reason a metallic bar of length, 𝐿= 0.3 m, having the circular section with the radius 
𝑟=0.0025 m (see Figure 1) will be considered. The material from which the bar is built is 
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steel with the following characteristics: Young’s modulus 𝐸= 2.1·1011 Pa, Poisson’s ratio, 
𝜈=0.29, and mass density, 𝜌= 7850 Kg/m3. 
  

 
Fig. 1 Geometry, border condition and load of the model. 
 

 

 
Fig. 2 The Stress-Strain curve of the material of the beam. 
 
The material of the beam is modelled as a linear Strain-Hardening Stress-Strain material 
(bilinear curve, [8], see Figure 2) having for the tangent modulus, [9], the value 𝐸௣= 843.37 
MPa, yield strain, 𝜀௖= 0.001, yield strength, 𝜎௖=210 MPa, ultimate tensile strain, 𝜀௥= 0.25, 
and by the ultimate tensile strength, 𝜎௥=420 MPa. Resistance to fatigue through any bending 
cycle of the material, [10], is characterized by the stress 𝜎ோ=168 MPa, and by the strain 
𝜀ோ=0.0008 (both are the fatigue limit, [11]). 

2.1 The equations of the bar deformation  

To solve the equations of the transverse vibrations of the bar in Figure 1, are used the model 
Euler-Bernoulli, [12] or [13], for a prismatic bar having the flexural rigidity  , the cross 
section area, 𝐴, the second moment of area, 𝐼, mass density, 𝜌,all constant along the length 
of the bar: 
 

𝐸𝐼
𝜕ସ𝑦

𝜕𝑥ସ
= −𝜌𝐴

𝜕ଶ𝑦

𝜕𝑡ଶ
 

(1) 

 
The bar is assumed built-in at both ends. Consequently, after [12], boundary conditions are: 
 

𝑦(0, 𝑡) = 0, 𝑦(𝐿, 𝑡) = 0, 𝜕𝑦/𝜕𝑥 (0, 𝑡) = 0, 𝜕𝑦/𝜕𝑥 (𝐿, 𝑡) = 0 (2) 
 
The initial conditions are: 
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𝑦(𝑥, 0) = 0,
𝜕𝑦

𝜕𝑡
(𝑥, 0) = 0 

(3) 

 
The force that produces the vibration of the bar is given by the formula: 
 

𝐹(𝑥, 𝑡) = 𝐹଴ sin ωt  𝐻 ൬𝑥 −
𝐿

2
൰ 

(4) 

 
where H is the Heaviside function. 

2.2 Rheological equations  

The rheological behaviour of the bar material is defined by the equations (5) - (9), after [7]. 
 

𝜎(𝜀) = ൜
𝐸𝜀, 𝑖𝑓 |𝜀| < 𝜀௖

𝐸௣(𝜀 − 𝜀௖) + 𝜎௖, 𝑖𝑓 𝜀௖ ≤ |𝜀| ≤ 𝜀௥
 

(5) 

 

𝜀௥ = 𝜀௥
଴ −

1

𝐸௣

න 𝑤(𝑥, 𝑠)𝑑𝑠
௧

଴

 
 

(6) 

 

𝜎௥ = 𝜎௥
଴ − න 𝑤(𝑥, 𝑠)𝑑𝑠

௧

଴

 
 

(7) 

 

𝐸௣ =
𝜎௥ − 𝜎௖

𝜀௥ − 𝜀௖

 (8) 

 

𝑤(𝑥, 𝑡) = ห|𝜎(𝑥, 𝑡)| − 𝜎ோห ∙ ฬ
𝜕𝜀

𝜕𝑡
(𝑥, 𝑡)ฬ ∙ 𝐻(|𝜀(𝑥, 𝑡))| − 𝜀ோ) 

(9) 

 
It is easy to see that the relationships (5) - (9) imply that the tangent modulus, 𝐸௣  remains 
constant in the transformation suffered by the bar material in space and time. The 
mathematical model (5) - (9) for the fatigue of the material, takes into account the statement 
made in the literature, [10], that fatigue is defined as a sensitive reduction of the mechanical 
characteristics of the material. In the case of this model, it means lowering of the ultimate 
strength, both in strain and in stress. 

3 Problem Solution 

In this article, it is assumed that the loads applied to the bar, produce in its material, stresses 
and strain located in the elastic-linear area, reaching at most the point of flow (point C on the 
characteristic curve of the material, shown in Figure 2). The hypothesis of the validity of the 
linear summation of the effects of several requests will also be accepted. With these 
specifications, the solution of the equation (1) with the boundary conditions (2), the initial 
conditions (3) and the loading (4), is obtained in agreement with [13]: 
 

𝑦(𝑥, 𝑡) = ෍ ෍ 𝐶௜௞𝑌௜(𝑥)𝜓௞(𝑡),

ே೎

௞ୀଵ

ே೑

௜ୀଵ

 

 
(10) 
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where 𝑁௙is the number of bar pulsation considered in the calculus (in this case 9, indexed by 
𝑖), 𝑁௖ is the number of sinusoidal components of the disturbing force (indexed with the index 
𝑘). The coefficients of the double sum of formula (10) are defined by formula (11): 
 

𝐶௜௞ =
𝐴௞𝑌௜ ቀ

𝐿
2

ቁ

𝐸𝐼𝐵௜𝛼௜
ସ ൤1 − ቀ

𝜔௞

𝑝௜
ቁ

ଶ

൨
 

 
 

(11) 

 where 𝐴௞ are the amplitude of perturbation (15), 𝑝௜  are the natural frequencies: 

𝛼௜
ସ = 𝑝௜

ଶ
𝜌𝐴

𝐸𝐼
, 𝜔௞ = 2𝜋𝜈௞ . 

 
(12) 

and: 

𝐵௜ = න ൭𝑉(𝛼௜𝑠) −
𝑉(𝛽௜𝑠)

𝑈(𝛽௜𝑠)
𝑈(𝛼௜𝑠)൱

ଶ

𝑑𝑠
௅

଴

 
 
 

(13) 
where 𝛽௜ = 𝐿𝛼௜, and: 
 

𝑈(𝑧) =
cosh 𝑧 − cos 𝑧

2
, 𝑉(𝑧) =

sinh 𝑧 − sin 𝑧

2
 

 
(14) 

 
 
are two of Krylov's four functions, [13]. The perturbation force function has the form: 
 

𝐹(𝑥, 𝑡) = ෍ 𝐴௞𝜓௞(𝑡)𝐻 ൬𝑥 −
𝐿

2
൰

ே೎

௞ୀଵ

 
 

(15) 

where: 
𝜓௞(𝑡) = sin (𝜔௞𝑡). (16) 

 
Knowing the relative displacement (10), the strain and the stress in the bar is obtained: 
 

𝜀(𝑥, 𝑡) =
𝐼

𝑊

𝜕ଶ𝑦

𝜕𝑥ଶ
(𝑥, 𝑡), 𝜎(𝑥, 𝑡) = 𝜎൫𝜀(𝑥, 𝑡)൯  

 
(17) 

 
To obtain the explicit expression of the stress, from (17), the relationship (5) will be used. In 
(17), 𝐼 is the area moment of inertia, and 𝑊 is the bar section modulus. 
 
3.1 Results, comments 
 
In this section, three results that can facilitate to the readers, an estimation of the simulation 
capabilities of the mathematical model defined by equations (1) - (17), but also of its 
deficiencies are presented. 
 
3.1.1 Oscillations which produce fatigue, compared to oscillations that don't produce 
fatigue for the bar's material 
 
A disturbing force of the form (4) with the intensity 𝐹଴= 50 N, and the frequency 𝜈= 1 Hz, 
for the oscillation which does not produce the fatigue of the bar material, and the intensity 
𝐹଴= 65 N, and the frequency 𝜈= 1 Hz, for the oscillation which produces fatigue of the 
material is considered. The variation of the relative displacement (the deformation) in space 
and time is given in Figure 3, respectively Figure 4. 
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Intuitively, it is expected that in the case of bending vibrations, at low amplitude and 
frequencies that maintain the deformation in the elastic-linear range, the maximum specific 
stress and deformation should have values close or even equal to those from the case of static 
load with the same magnitude of force. These expectations are partially confirmed. For the 
oscillation that does not produce the fatigue of the bar material, the magnitude of the 
deformation (relative displacement), as well as the strain and stress in the ends and the middle 
of the bar, practically coincide. By computing the maximum deflection and the stress at the 
middle of the bar and at the ends, for the static case, according to [14], [15] or [17], the result 
from the Table 1 and 2 are obtained. 
 

Table 1 Results for the case where the bar is 
bent without fatigue. 

Table 2 Results for the case where the bar is 
bent with fatigue accumulation. 

Case 𝐹଴= 50 N 
 Deflection, m Stress, MPa 
Static load 0.001091 152.789 
Vibration  
load 

0.001091 154.341 

 

Case 𝐹଴= 65 N 
 Deflection, m Stress, MPa 
Static load 0.001419 198.625 
Vibration  
load 

0.001418 200.643 

 

 
The differences can be motivated by the fact that the magnitude of 50 N makes the bar work 
in the elastic-linear range below the fatigue limit, while the 65 N magnitude makes the bar 
work in the linear-elastic range, but in the area in which fatigue is produced. 
 

  

Fig. 3 Time and space dependence of the bar 
deformation without fatigue. 

Fig. 4 Time and space dependence of the bar 
deformation with fatigue. 

 
The strain and the stress space and time dependence are comparatively presented in Figure 5 
and 6, respectively 7 and 8. 
An interesting aspect to note is that fatigue has a local character both in space and in time. If 
the loading of the material is low and the strain and stress are located below the fatigue limit, 
then the ultimate strain and stress remains constant, as shown in Figures 9 and 10. 
 

  
Fig. 5 Time and space dependence of the strain in 

the bar without fatigue. 
Fig. 6 Time and space dependence of the strain 

in the bar with fatigue. 
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Fig. 7 Time and space dependence of the stress 

in the bar without fatigue. 
Fig. 8 Time and space dependence of the stress 

in the bar with fatigue. 
 

 

  
Fig. 9 Time and space dependence of the 
ultimate strain in the bar without fatigue. 

Fig. 10 Time and space dependence of the 
ultimate strain in the bar with fatigue. 

 
When the load produces high stresses and deformations in the material, over the fatigue 
limits, in the material areas where these values are reached, the ultimate strain and stress 
limits decrease from initial values, as seen in Figures 10 and 12. 
It can be seen that in the case of the bar examined in this article, 𝜀௥ and 𝜎௥, decreases from 
the initial value in the vicinity of the bar's ends and at the middle of the bar, i.e. exactly the 
locations where it is recommended to dimension (calculate) this type of bar. 
 

 
 

 

Fig. 11 Time and space dependence of the 
ultimate stress in the bar without fatigue. 

Fig. 12 Time and space dependence of the 
ultimate stress in the bar with fatigue. 
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3.1.2 Disturbing forces with multiple oscillating components 
 
In order to emphasize the behaviour of the model at the action of a disturbing force consisting 
of three components, of which only one that produces the fatigue of the material of the bar, 
the expression (15) - (16) is used with the next amplitudes: 𝐴ଵ= 5 N, 𝐴ଶ= 15 N and 𝐴ଷ= 75 
N, and the frequencies: 𝜈ଵ= 5 Hz, 𝜈ଶ= 2.5 Hz, 𝜈ଷ= 0.7 Hz, respectively the phases: 𝜑ଵ= 0, 
𝜑ଶ= 0.3, and 𝜑ଷ= 0.7.  
Several quantitative and qualitative aspects of the bar response to the conjugate action of the 
three oscillating components of the disturbing force are shown in Figures 13-16. It is noticed 
that the deformation of the bar takes place in the linear elastic range, but partly in the upper 
part, the area in which fatigue accumulates. The deformation (strain and stress, see Figure 13 
and 14) does not enter in the plastic range. The areas of the bar where fatigue accumulates 
are the built-in ends and the neighbourhood of the point where the disturbing force is applied 
(Figure 15). Accumulation of fatigue at the ends of the bar is more intense than in the middle 
of it, as can be seen from Figures 15 and 16. 
 

  
Fig. 13 Distribution of the deformation and strain 

along the bar. 
Fig. 14 Time dependence of the stress on two 

points on the bar. 
 

Fig. 15 Ultimate stress variation in space and 
time. 

Fig. 16 Time dependence of ultimate stress in two 
points on the bar. 

 
 

3.1.3 Fatigue failure 
 
The mathematical model presented in this paper aims to model the phenomenon of fatigue 
for the metallic materials. As a result, this subchapter shows how to get an S-N curve, 
traditionally called the Wöhler curve, using numerical simulation of elementary tests. The 
virtual testing of the endurance of the bar from Figure 1 was made by a sinusoidal disturbing 
force with amplitude ranging between 50 and 100 N and a frequency of 5 Hz. Under these 
conditions, the stress in the bar, varied between -210 MPa and 210 MPa, being characterized 
by the stress ratio, 𝑅 = -1, [11]. Although solution (10) - (16) is described by series 
developments, it does not require operations to solve differential equations with partial 
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derivatives, the calculation, and long-term graphical representation (up to millions of cycles, 
500,000 s, for example), is still yet impossible on the computers available to the author. The 
main difficulty consists in solving the integral operator that appears in equations (6) and (7). 
In order to obtain a Wöhler curve of the material of the bar, defined by the relations (1) - (9),  
is assumed (hypothesis) that the failure occurs at the moment when, in the critical sections of 
the bar, the ultimate strength, 𝜎௥, drops to the maximum value of stress, produced by the 
disturbing force, 𝐹(𝑥, 𝑡) in the bar. In addition, it is observed that, for times up to 10 s (50 
cycles), the ultimate stresses linearly depends on the number of cycles achieved.  It is also 
assumed that linearity is maintained for a sufficiently large number of cycles (over 500,000). 
With these specifications, the Wöhler diagram shown in Figure 17 is obtained, where the 
medallion shows the variation in time of the disturbing force. 
 

 
Fig. 17 Wöhler curve for the material of the bending bar, subject to sinusoidal load. 

 
Similarly, Wöhler charts for variable loads can be obtained. 
 
 
4 Conclusions 
 
The mathematical model of the accumulation of fatigue in the material of the bars subject to 
the bending vibrations appears as a natural development of the models published by the 
author, [6], [7]. Accumulations of fatigue, as well as plastic deformation, are processes that 
irreversibly affect the internal structure of the bar. These phenomena practically describe the 
"leakage of life" of the bar. After every fatigue accumulation process, the bar is no longer the 
same as the initial one, it becomes another bar with other resistance characteristics (stress 
and strain breaking limits, ultimate strain and stress,𝜀௥,𝜎௥). The mathematical model of 
material fatigue presented in this paper expresses the accumulation of fatigue only by 
decreasing the ultimate strain and stress,𝜀௥,𝜎௥. It is possible that the fatigue phenomenon also 
affects the other characteristics of the material: strain and stress of flow and / or fatigue and 
linear elasticity, implicitly the modulus of elasticity and plasticity. Taking into account to the 
change in these features involves large computational complications. There is not enough 
experimental data to introduce such changes. Even the variation of the deformation and the 
ultimate tension in the material of a bar that has accumulated fatigue is quite difficult to 
verify. 
The model defined in this article behaves satisfactorily in bending phenomena of slender 
bars, as long as loading makes the material work strictly in the elastic-linear range. For the 
future is propose to studying the bar's response at the entrance to the plastic material range. 
The results presented show that the accumulation of fatigue is a phenomenon unfolded over 
time and, generally, has local character. This means that fatigue accumulates in areas where 
stress and deformation take values in the upper elastic linear range, where fatigue is produced. 
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The fact that the phenomenon of fatigue is a phenomenon that takes place over time does not 
mean that the time it is that which produces fatigue. The fatigue and implicitly the irreversible 
modification of the material is caused by the action of the loads, namely those loads capable 
of inducing in the bar, sufficiently large strain and stress. From the mechanical point of view, 
the material of the bar manifests its "passing of life" only to the action of these loads, which 
changes its structure. The value of the ultimate strain or strain can be considered, 
mechanically, as the internal "time" of the bar. 
The mathematical model presented in this paper, although it does not require the numerical 
solving of complex differential equations, but only of some integral operators, has great 
difficulties in simulating phenomena in high time. High working times are typical for the 
fatigue phenomenon. In the results chapter we showed how this difficulty can be solved, at 
least for the time being, using a few hypotheses was showed. A Wohler diagram for the bar 
taken as a subject and an oscillating bending load of various magnitudes was deducted by 
simulation. 
The model thus formulated is further tested to observe various aspects: behaviour in the 
plastic work range, the influence of the deformation velocity, and of the frequency of 
disturbing oscillations on the accumulation of fatigue, the stability of the model, etc. 
This model of fatigue can be incorporated into the numerical solving programs of the 
deformation problems of the three-dimensional mechanical structures. The effort to introduce 
fatigue as a current phenomenon (whether or not fatigue is accumulating) is linked, however, 
to great efforts in software, but first in the experimental validation of such a model. 
The main advantage of this model is that, simultaneously with solving the deformation 
problem of a structure, it can also provide elements that estimate its fatigue, and also localize 
the areas fatigue-sensitive of the structures. 
Then, but not finally, the author can’t stop, during the process of building this model, to 
reflect at the Tesla's statement, [16]: "Today's scientists have substituted mathematics for 
experiments, and they wander off through equation after equation, and eventually build a 
structure which has no relation to reality." 
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