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Abstract. In order to perform operation management tasks, including 
state monitoring and control strategy optimization, of a solid oxide fuel 
cell-gas turbine (SOFC-GT) hybrid system, a data-driven dynamic model 
based on deep learning technique of long short term memory (LSTM) 
network is developed to predict the behaviours of fuel utilization. In 
addition, a LSTM model with unsupervised deep auto-encoder (DAE) 
method was developed to extract the feature from input data. The 
comparison performance between the common LSTM model and DAE-
LSTM model was investigated. The results show that the DAE-LSTM 
model can enhance the prediction performance. Moreover, the effect of 
data size was investigated. The results demonstrate that the unsupervised 
DAE-LSTM model trained by large data size can further improve the 
prediction performance. The maximum error is only 0.00529, and average 
error decreases to 0.00025. In conclusions, the unsupervised DAE-LSTM 
model is an effective approach to predict dynamic behaviours. 

1 Introduction 
Solid oxide fuel cell-gas turbine (SOFC-GT) hybrid system is one of the most 

promising solutions to the energy and environment issues due to high efficiency as well as 
ultra-low emissions [1-4]. However, SOFC-GT systems are highly nonlinear, multi-variable, 
and strongly coupled, causing highly complex thermodynamic performance [5]. An 
accurate model is an essential foundation of system the state monitoring, fault diagnosis, 
control strategy optimization.  

Many researches have investigated the dynamic mechanism model of SOFC-GT 
systems from the first principles in order to analyse the dynamic behaviours in detail. 
Brouwer et al [6] developed a dynamic mechanism model for a SOFC-GT hybrid system 
with a 5 kW two shaft gas turbine. The dynamic performance with biomass gas was 
investigated for designing control system. Mclarty [7] developed a dynamic mechanism 
model with three-dimensional SOFC model to analysing the performance of a 100MW 
SOFC-GT system. Ferrari and Traverso et al [8, 9] developed TRANSEO program on the 
Simulink platform and established a dynamic mechanism model for a SOFC-GT system 
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with anode ejector. These mechanism models describe the internal complex mass, heat and 
electrochemical processes, including the distribution of gas components, pressure, 
temperature, current density, voltage and other parameters. However, the mechanism model 
involves several physical properties and assumptions, such as the electronic and ionic 
conductivity, turbomachinery characteristics. The complexity and degradation of SOFC and 
gas turbine limit the comprehensiveness and accuracy of mechanism model. 

The data-driven modeling method directly mines system characteristics from the input 
and output data. It has attracted huge attentions because of its efficiency and flexibility. 
Jurdo [10] established a nonlinear data-driven model with fuzzy Hammerstein method to 
predict the SOFC performance. Zhu et al [11-13] established several SOFC data-driven 
models based on various traditional machine learning algorithms such as neural network, 
support vector machine.  

Benefitting from the prosperous development of big data analytics, deep learning 
technique is a promising approach to effectively mine the big data collected from operation 
and experiment [14]. The conventional machine learning methods transform the inputs with 
only one or two rounds before deriving the outputs, while the deep learning method 
transforms data with multiple times and automatically extract features from data with an 
unsupervised manner [15].   

Fuel utilization is an important parameter to guarantee the SOFC operating effectively 
and safely. Therefore, the fuel utilization should be monitored and controlled at a proper 
range. In this paper, the supervised deep learning model and unsupervised deep learning 
model based on long short term memory (LSTM) network both developed to predict the 
dynamic performance of SOFC fuel utilization. The prediction performances of both LSTM 
models and the effect of training data size were also investigated. 

2 Methodology 

2.1 System description 

The schematic of the SOFC-GT system fed by natural gas is shown in Fig. 1 which has 
been proposed in our previous work [16]. It is a pressurized hybrid system with anode and 
cathode recirculation loops, which are both performed by a single stage ejector. The fuel 
cell is a planar co-flow direct internal reforming SOFC. 
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Fig. 1. Layout of the SOFC-GT system             Fig.2. Structure of the DAE-LSTM model 

2.2 Dynamic LSTM model structure of fuel utilization 

The major factors affect the fuel utilization (FU) are fuel flow rate (Gan), air flow rate 
(Gca), and SOFC operating voltage (Uop). Therefore, the LSTM model of fuel utilization is a 
multi-input single-output model. In additional, a deep auto-encoder (DAE) model is 
established to extract meaningful features as another input data of LSTM model. The 
structure of the DAE-LSTM model is shown in Fig. 2. 
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In a physical SOFC-GT system, the LSTM training data can be sampled from the 
operating data or experiment data. However, with the limited availability of experiment and 
operation conditions, a mechanism model in our previous work [16, 17] is applied to supply 
the training data of LSTM model. The mechanism model includes SOFC model with four 
temperature layers, ejector model, compressor and turbine models based on characteristic 
map, lumped blower model and after-burner model, one dimensional heat exchanger (HE) 
model and reformer heat exchanger (RHE) model. The SOFC model is developed based on 
finite volume method and the detail SOFC modeling method and its validation can be seen 
in our previous work [17]. The ejector model simulate each section, including nozzle throat, 
nozzle outlet, mixing chamber inlet, diffusor inlet, and diffusor outlet. The detail modeling 
method can also be seen in our previous work [16]. 

2.3 Feature extraction with DAE model 

Unsupervised deep learning has been widely applied to extract high-level abstract 
features from  input data in several fields in order to reduce the risk of over-fitting [18]. The 
DAE algorithm is an unsupervised deep learning method, which consists of an encoder and 
a decoder. In this paper, a DAE model with a symmetric structure is established to extract 
the meaningful feature data, shown in Fig. 3. 

The encoder maps the input data x to a hidden vector h through the sigmoid function. 
( )fsh Wx b (1) 

Where sf is the activation function of encoder, W and b are the parameters of encoder. 
The decoder then transform the hidden vector h into a reconstruction vector z. 

( )gs 'W h b'z (2) 
Where sg is the activation function of decoder, W' and b' are the parameters of decoder. 
The parameters of encoder and decoder W, b, W', and b' are optimized by minimizing 

the average reconstruction error. 

1

[ log 1 log 1 ]
N

AE i i i i
i

J x z x z   (3) 

Fig. 3. Structure of DAE          Fig. 4. Structure of LSTM 

2.4 LSTM prediction model 

LSTM is a special type of Recurrent Neural Network (RNN), which can effectively use 
lone-term data and solve the vanishing gradient problems of conventional RNN [19]. The 
structure of LSTM is shown in Fig. 4. Parameter C indicates the status of the cell and h 
indicates the output. There are three gates in LSTM, the forget gate determines which 
information of the previous steps should be discarded, the input gate determines which 
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values of the input should be selected to update the state of the cell, the output gate then 
combines treated historical information with input data and achieve the final output [20]. 

3 Result and discussion 
The capabilities of both LSTM model and DAE-LSTM model are tesed in a 328 kW 

SOFC-GT system shown in Fig. 1. The output powers of SOFC and GT are 270 kW and 58 
kW resperistively, and the system efficiency can reach 61.88% at the design conditon. The 
detail thermodynamic performance can be seen in our previous work [16]. 

In order to compare their prediction performance of the common LSTM model and 
DAE-LSTM model, the network structures and parameters of activation function are 
optimized to established the optimal DAE and LSTM models. The DAE sturcture is 
composed of a 2-layer encoder with 4 and 2 nodes respectively. The structure of the 
decoder is symmetrical. The common LSTM network structure consists 15 nodes in its 
hidden layer and DAE-LSTM network sturcture is composed of 20 nodes. The batch size of 
the DAE and LSTM are both 200. 

3.1 Comparison of LSTM model and DAE-LSTM model 

After choosing the network parameters of LSTM model and DAE-LSTM model,  the 
training data are sampled from the mechanism model when the fuel flow rate steps from 
0.007 kg/s to 0.0109 kg/s, and the size of sample data is 1000. The test data are also 
sampled when the fuel flow rate steps from 0.007 kg/s to 0.0095 kg/s. 

Fig. 5 shows the comparison result of fuel utilization prediction performance between 
LSTM model and DAE-LSTM model. The maximum errors of LSTM and DAE-LSTM 
model both occur at the moment of step. The maximum error of common LSTM model is 
0.00702, and the DAE-LSTM model is 0.00690. The average errors of common LSTM 
model and DAE-LSTM model are 0.00198 and 0.00102, respectively. Therefore, the deep 
learning model using an unsupervised manner to extract feature as another input data can 
enhance the prediction performance.  

Table 1. Errors between DAE-LSTM and LSTM 

  DAE-LSTM LSTM 

Average error 0.00102 0.00198 

Maximum error 0.00690 0.00702 

 
Fig. 5. Effect of unsupervised DAE                          Fig. 6. Effect of training data size 
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3.2 Effect of training data size 

The accuracy of data-driven model increases with the growth of training data size 
because more useful information is included. Considering the prediction performance of 
common LSTM model and DAE-LSTM model, the DAE-LSTM model is applied to 
analyze the effects of training data size. Except the training data sampled in 3.1 section, a 
large training data are sampled with four steps of  fuel flow rate, which steps from 
0.007kg/s to 0.00895kg/s, from 0.00895kg/s to 0.0109kg/s, from 0.0109kg/s to 0.00895kg/s, 
and from 0.00895kg/s to 0.007kg/s respectively. The size of large data is 4000. 

Fig. 6 demonstrates the effect of the data size on the prediction performance of DAE-
LSTM model. The errors between small size data and large data size are shown in Table 2. 
The maximum errors of DAE-LSTM model trained by large size data is 0.00529, and the 
average errors is only 0.00025. Therefore, the prediction performance of DAE-LSTM 
model trained by large size data is more accurate than the model trained by small size data. 
In conclusion, the DAE-LSTM model with large size data is accurate enough to predict the 
dynamic performance of SOFC fuel utilization. 

Table 2. Error between large size and small size 
  Large size Small size 

Average error 0.00025 0.00102 

Maximum error 0.00529 0.00690 

4 Conclusions 
In this paper, a DAE-LSTM model is established to describe the fuel utilization 

dynamic behaviors of a SOFC-GT hybrid system. The conclusions are as following. 
(1) A DAE-LSTM model and common LSTM model are developed to predict the SOFC 

fuel utilization dynamic behaviors. The unsupervised DAE model is designed to extract 
meaningful  features from data. The LSTM models are developed to predict the fuel 
utilization performance. 

(2) The LSTM model with DAE can enhance the prediction performance because the 
unsupervised manner DAE method can extract feature as another input data When the DAE 
model is added to extract features, the average error of prediction performance decreases 
from 0.00198 to 0.00102. The maximum error decreases from 0.00702 to 0.00690. 

(3) The accuracy of the DAE-LSTM model increases with the growth of training data 
size. The average error with large size data decreases to 0.00025, and maximum error 
decreases to 0. 00529. 
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