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Abstract. This paper focuses on a biofuel-based Multi-Energy System 

generating electricity, heat and hydrogen. The proposed system, that is 

conceived as refit option for an existing anaerobic digester plant in which 

the biomass is converted to biogas, consists of: i) a fuel processing unit, ii) 

a power production unit based on the SOFC (Solid Oxide Fuel Cell) 

technology, iii) a hydrogen separation, compression and storage unit. The 

aim of this study is to define the operating conditions that allow optimizing 

the plant performances by applying the exergy analysis that is an appropriate 

technique to assess and rank the irreversibility sources in energy processes. 

Thus, the exergy analysis has been performed for both the overall plant and 

main plant components and the main contributors to the overall losses have 

been evaluated. Moreover, the first principle efficiency and the second 

principle efficiency have been estimated. Results have highlighted that the 

fuel processor (the Auto-Thermal Reforming reactor) is the main contributor 

to the global exergy destruction (9.74% of the input biogas exergy). In terms 

of overall system performance the plant has an exergetic efficiency of 53.1% 

(it is equal to 37.7% for the H2 production). 

1 Introduction  

Energy systems designed to produce useful multiple energy output (e.g. hydrogen, heat 

and electricity) from one or more kinds of energy inputs represent a possible sustainable 

solution for the transition to low-carbon future energy systems thanks to the enhancement of 

the overall efficiency. Moreover, a further step to reach the zero-carbon energy systems can 

be done by using renewables as primary sources. In particular, the biomass utilization could 

contribute to the mitigation of greenhouse gas emissions, while enhancing energy security 

and promoting the economic development of rural regions [1]. Thus, the combination of 

multi-generation with biomass conversion seems to satisfy the current requirements of high 

overall energy efficiency and renewable sources implementation in the energy production. 
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Several studies on multi-generation systems for various applications are available in the 

technical literature Soltani et al. [2] presented energy and exergy analyses on an integrated 

energy system fed primarily by a sawdust burner biomass. The system proposed by the 

authors produced five commodities: electricity, steam, hot water, district heating and timber 

drying, and served a wood factory and the neighborhood via district heating. The 

thermodynamic analysis identified two parameters that affected significantly system 

performance, and parametric studies were utilized for an optimization purpose. The 

calculated energy and exergy efficiencies were found to be around 60% and 25%, 

respectively, while the corresponding energy and exergy efficiencies of a biomass system 

with only electricity generation are 11% and 13%, respectively.  

Dincer and Zamfirescu [3] evaluated the advantages of multi-generation energy systems 

powered by renewable energy and compared several options from energy and economic 

points of view. Results of their study highlighted that the multigeneration can help to increase 

both energy and exergy efficiencies, to reduce the costs and the environmental impact, and 

to increase the energy generation sustainability. 

Ahmadi et al. [4] presented a paper in which the thermodynamic analysis of a multi-

generation system, based on a biomass combustor, an organic Rankine cycle (ORC), an 

absorption chiller and a PEM electrolyzer, was carried out. The modeling of the plant was 

performed and the exergy destruction and exergy efficiency of each component were 

calculated by varying some design parameters. 

In [5], a novel multigeneration system (heating, cooling, electricity, hydrogen, water) fed by 

biogas and geothermal heat source, was studied by applying the first and second laws 

analyses that result to be an effective tools for the performance assessment. 

Cruz et al. [6] proposed a bio-hydrogen energy system integrated with a combined-cycle 

plant and analyzed its performance through an exergy analysis. The hydrogen production 

section consists of a dry reforming of methane (DRM) unit, high and low temperature water 

gas shift (WGS) reactors and a pressure swing adsorption (PSA) unit. The combined cycle 

satisfies the electricity and steam requirements of the process. Results highlighted that the 

system had an exergetic efficiency of 55%, with the DRM and the power generation unit 

arising as the main sources of irreversibility. 

Bellotti et al. [7] proposed a power to fuel system integrated with CCS Coal power plant 

producing electricity methanol, and oxygen as main output and performing also the economic 

assessment. 

In this study a biomass-based Multi-Energy System (MES) for the combined hydrogen, heat 

and electricity was analyzed under the exergy point of view. The MES, that is conceived as 

refit option for an existing anaerobic digester plant in which the biomass is converted to 

biogas, consists of: i) a fuel processing unit, ii) a power production unit based on the SOFC 

(Solid Oxide Fuel Cell) technology, iii) a hydrogen separation, compression and storage unit.  

In previous papers [8,9], the authors designed this plant and evaluated its performances from 

energy and economic points of view by applying a sensitivity analysis based on the SOFC 

load variation and, as a consequence, on the production of the two main energy vectors, 

hydrogen and electricity. Results of the economic assessment [9], highlighted that the main 

contributor to the plant economic sustainability was the hydrogen production, due to the low 

prices of electricity in the day ahead market compared with the current hydrogen market 

price. 

Therefore, the presented exergy analysis focuses  on a MES designed to produce the amount 

of hydrogen as required by small refueling stations (100 kg/day); in this case the power 

production unit (the SOFC power unit) is sized to satisfy the electric energy consumption 

required for the MES operation and in particular for the hydrogen separation, compression 

and storage unit. 
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2 The Multi-Energy System Description 

The multi-energy system proposed is conceived to be integrated in an existing anaerobic 

digestion plant, so that the biochemical conversion of the biomass into biogas is not analysed. 

The biogas composition is assumed equal to 60% CH4 and 40% CO2; this is the composition 

expected by using the BEKON Dry Fermentation technology [10], which has been chosen as 

the Best Available Technology for the anaerobic digestion process. 

Figure 1 shows the layout of the plant. Biogas, air and water are heated in the heat 

exchangers HE2 (320°C), HE3 (580°C) and HE1 (550°C), respectively, before entering the 

ATR (Autothermal Reforming) reactor.  

 

Fig. 1. Layout of the polygeneration system, optimized for compressed H2 production 

The ATR combines the partial oxidation reforming and the steam reforming in a single 

process in which the thermal energy, needed to sustain the endothermic reforming reactions, 

is internally supplied by the oxidation of a portion of processed fuel with a controlled amount 

of oxidant. Thus, the operating parameters of the process are the pressure, the temperature 

(or the oxidant to carbon ratio, here defined as the air to biogas ratio, A/B) and the steam to 

carbon ratio (here defined as the steam to biogas ratio, S/B) [11]. High reforming 

temperatures assure higher hydrocarbon conversion as suggested in [12,13].  

The produced syngas exiting the ATR reactor at 767°C, is cooled up to 328°C (HE1) and 

then is separated in two fluxes: the stream (11) is sent to the WGSR (water gas shift reactor) 

and the stream (9) is used for feeding the SOFC power unit. The air for the cathode side (20) 

of the SOFC is pre-heated before entering it (21) at about 368 °C. The SOFC power unit has 

been sized for supplying the electrical power required by the hydrogen separation and storage 

sections. Thus, its configuration, in terms of stacks number and cells number per stack, has 

been defined by taking into account the characteristics of a single cell analyzed by means of 

experimental and numerical activities presented in a previous paper [14]. By fixing the cell 

operating temperature equal to 800°C, the SOFC operating conditions (the average cell 
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voltage 0.725 V, the current density 0.508 A/cm2) have been chosen because they permit to 

obtain a good compromise between the stack efficiency (0.45 referred to the LHV of syngas) 

and the average cell power density (0.33 W/cm2). Finally, the stack cooling has been 

performed by assigning the anode and cathode flow rates and temperatures. The stream 

exiting the WGSR (12) is cooled in the heat exchanger HE7 and dried in the separator, SEP, 

before to be compressed byC1 to 8 bar, that is the operating pressure of the membrane 

separation unit in the feeding side. Then, the stream (16) is heated (HE5) to reach the 

operating conditions of the membrane separation unit (Pd-M), where the product hydrogen 

is recovered at 1.1 bar. Thus, the pure hydrogen (18) is cooled (Cooler1) at 20 °C and pre-

compressed at 5 bar by the compressor C2. The stream (30) coming out from the C2 is cooled 

in the Cooler2 and compressed (Ionic Compressor, IC) at 820 bars, in accordance to the 

requirements of an high pressure hydrogen refilling station. The purge gas (19) from the 

membrane separation unit is oxidized in a catalytic burner (CB) together with the cathode 

off-gas (23), the anode off-gas (10) and the fresh air (33). The combustor effluent exchanges 

heat with more streams (heat exchangers HE3, HE5, HE2, HE6), before being exhausted (28) 

at 156 °C. The heat exchangers devoted to the thermal demand are HE6 and HE7. Table 1 

summarizes the main operating parameters and the energy balance of the plant. 

 
Table 1. MES system: main operating parameters 

Power production area 

SOFC power unit (kW) DC/AC 38/36.4 

Stacks number/ Cells number x stack 4/52 

Active area (cm2) 500 

Average stack voltage/Current density (V/A cm-2) 0.725/0.508 

Stacks Temperature (°C) 800 

UF 0.790 

Chemical process area 

Fuel processing unit  

ATR/WGS reactors temperature (°C) 767/400 

A/B;S/B (mol/mol) 1.7;0.62 

H2 separation area 

Pb-Membrane Separation Unit  

Hydrogen Recovery Factor, HRF 0.747 

Feed/Permeate sides pressure (bar)  8.0/1.1 

Operating Temperature (°C) 400 

Modules Number/ Module Tubes Number 9/18 

Tube area (m2) 0.0385 

Compressor C1  

Pressure ratio 7.3 

Polytropic efficiency 0.75 

Electric power (kW) 18.4 

Hydrogen compression area  

Compressor C2  

Pressure ratio 5 

Electric power (kW) 4.0 

Polytropic efficiency 0.75 

Ionic compressor IC   

Stage Pressure ratio  2.77 

Stage Polytropic efficiency 0.91 

Stage Heat removed (%) 90 

Electric Power 11.0 

Auxiliaries consumption (kW) 3.0 
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3 Exergetic Analysis Results 

Exergy analysis seems to be an appropriate technique to assess and rank the irreversibility 

sources in chemical processes [15].  

The exergy analysis is here performed for both the overall plant and main plant components.  

The total exergy of a multicomponent material stream is given by the sum of the chemical 

exergy of the species and the physical exergy: 

 

𝐸𝑥 = 𝐸𝑥𝐶ℎ𝑒𝑚 + 𝐸𝑥𝑃ℎ𝑦𝑠 

 

(1) 

The value of the chemical exergy is derived from [16], taking into account the two 

physical states of the water and the effect of the gas mixing on the chemical potential. The 

physical exergy is estimated with respect to the enthalpy and entropy, calculated in 

polynomial form and assuming as reference conditions 25°C and 1 bar [17]. The exergy 

balance was performed by the means of a calculation spreadsheet. 

The general exergy balance, referred to the global control volume “g”, is defined by eq. 

(2).The sum of the exergy input and the reversible work exchanged is equal to the sum of the 

output exergy stream, the exergy lost (i.e. dispersed to the ambient in the ith component) and 

the irreversibility (Irr) that represents the exergy destruction rate occurring at the ith 

component level. 

𝐸𝑥𝑖𝑛𝑝𝑢𝑡,𝑔 + ∑ 𝑊𝑟𝑒𝑣,𝑖 = 𝐸𝑥𝑜𝑢𝑡𝑝𝑢𝑡.𝑔 + ∑ 𝐸𝑥𝑙𝑜𝑠𝑡,𝑖 + ∑ 𝐼𝑟𝑟𝑖 
(2) 

 

Figure 2 shows the overall system exergy balance. The main exergy input is due to the 

biogas chemical content, 𝐸𝑥𝑏𝑖𝑜𝑔𝑎𝑠, (the physical exergy of water, air and biogas are quite 

negligible, because their temperatures, 20°C, slightly differs from the state reference 

condition). The term 𝐸𝑥𝑙𝑜𝑠𝑡 , in the global balance consists of the exergy of effluents (i.e. low 

temperature flue gas and heat rejected by the coolers to the ambient) and summarizes all the 

low exergy streams that leave the process without yield a product. This term, directly 

calculated at component level, was added to evaluate correctly the exergy balance of the 

system. At MES level, the power production balance, represented by the term 𝑊𝑟𝑒𝑣,𝑖 is null, 

since the system is not designed for power production, but to sustain the process energy 

needs. The Grassmann diagram represents the global exergy balance with the irreversibilities 

destroying the 32.1% of the exergy in input, while the exergy lost is the 14.8 %. 

  

 
Fig. 2. Global MES Exergy Balance (Grassman Diagram) 

5

E3S Web of Conferences 113, 02017 (2019) 
SUPEHR19 Volume 1

https://doi.org/10.1051/e3sconf/201911302017



The two products, hydrogen and heat, represents the 37.7% and the 15.4% of the input 

exergy, respectively. The Biogas to hydrogen mass flow rate ratio is 16.6:1, resulting in a 

production of 4.2 kg/h of H2. 

Moreover it is possible to assess the overall MES performance defining a first principle 

efficiency, η, and a second principle efficiency (or rational efficiency), ε, referring to the 

generic “x” control volume, as in equation (3). 
 

𝜂𝑥 =
𝐸𝑜𝑢𝑡𝑝𝑢𝑡,𝑥

𝐸𝑖𝑛𝑝𝑢𝑡,𝑥
                              𝜀𝑥 =

𝐸𝑥𝑂𝑢𝑡𝑝𝑢𝑡,𝑥

𝐸𝑥𝑖𝑛𝑝𝑢𝑡,𝑥
 

(3) 

 

In both case the balance for the “g” control volume, can be summed up as the ratio 

between the output and the input stream to the system, basing on energy for the first principle 

efficiency and to the exergy for the rational efficiency. Table 2 presents the comparison of 

the two efficiencies taking into account the separate production of hydrogen and the 

combined hydrogen and heat production. In these two cases, the MES has an efficiency of 

40.71% and 77.28% and an overall rational efficiency of 37.7% and 53.1%. It can be noticed 

how the exergy approach reduces the heat production weight with respect to the first principle 

evaluation. 

Table 2. Global Balance of the MES system: efficiency and rational efficiency 

 Efficiency (ηg) Rational Efficiency (εg) 

H2 Production 40.71 37.71 

H2 and Heat Production 77.28 53.09 

 

The same approach can be used at single component level, taking into account in the 

efficiency definition also the effect of 𝑊𝑟𝑒𝑣,𝑖 that must be added to the output exergy if 

extracted by the system, i.e. produced by the system, and added, as absolute value, to the 

input exergy if introduced into the system. Moreover, the exergy destruction ratio (𝐼𝑟𝑟𝑖), that 

represents the part of the overall input exergy that is destroyed in the ith component [6], can 

be calculated as: 

  𝑦𝐼𝑟𝑟,𝑖 =
𝐼𝑟𝑟𝑖

𝐸𝑥𝑖𝑛𝑝𝑢𝑡,𝑔
 

(4) 

 

Table 3 presents the balance of the single components of the MES: the main contributor 

to the global exergy destruction is the combustion process which occurs in both ATR (𝑦𝐼𝑟𝑟,𝑖 

9.74%) and the Catalityc Burner (6.68%). High values of exergy destruction can be founded 

at HE1 (5.09%) where the irreversibility is due to heat transfer through a finite temperature 

difference, which is enhanced by the phase change of the water. The HE4, that is the 

regenerative cathode air heat exchanger, presents the lowest exergy efficiency (70.2%) due 

to the high temperature difference between the hot and cold fluid.  

It is worth noting that the syngas compression to 8 bar (after the WGSR) by means of the 

intercooled compressor C1 necessary for the Hydrogen separation requires more power with 

respect to subsequent compression phase. The compression up to 820 bar is performed by the 

C2 compressor and after the cooler 2 by the ionic compressor, IC, which performs a quasi-

isothermal compression of the hydrogen up to 820 bar, leading to a large impact of the C1 

exergy destruction (1.6%). 

 

 

6

E3S Web of Conferences 113, 02017 (2019) 
SUPEHR19 Volume 1

https://doi.org/10.1051/e3sconf/201911302017



Table 3. Component Exergy Balance Results 

 𝑾𝒓𝒆𝒗,𝒊 𝑬𝒙𝒊𝒏𝒑𝒖𝒕,𝒊 𝑬𝒙𝒐𝒖𝒕𝒑𝒖𝒕,𝒊 𝑰𝒓𝒓𝒊 𝑬𝒙𝒍𝒐𝒔𝒕,𝒊 𝜺𝒊   𝒚𝑰𝒓𝒓,𝒊 

U.M. [kW] [kW] [kW] [kW] [kW] [%] [%] 

FC 36.40 95.47 51.71 7.36 1.98 92.29 2.01 

CB  - 126.01 101.54 24.47  - 80.58 6.68 

ATR  - 391.63 355.96 35.67  - 90.89 9.74 

WGSR  - 228.50 227.77 0.73  - 99.68 0.20 

HE1  - 358.61 339.97 18.64  - 94.80 5.09 

HE2  - 438.48 435.07 3.40  - 99.22 0.93 

HE3  - 102.00 95.99 6.01  - 94.10 1.64 

HE4  - 13.23 9.29 3.94  - 70.20 1.08 

HE5  - 300.98 297.43 3.55  - 98.82 0.97 

C1  -18.40 212.76 214.51 5.82 10.83 92.80 1.59 

C2  -4.00 138.02 138.98 3.04  - 97.86 0.83 

IC  -11.00 138.02 138.07 0.77 10.18 92.65 0.21 

AUX  -3.00  -  -  -  -  -  - 

Cooler1  - 140.26 138.02  - 2.24 98.40  - 

Cooler2  - 138.98 138.02  - 0.96 99.31  - 

Pd-M  - 221.37 221.00 0.37  - 99.83 0.10 

Stack  - 27.82  -  - 27.82  -  - 

 

A further step has been made by grouping the MES component into functional segments: 

i) the energy production area (SOFC, HE1); ii) chemical process area (ATR, WGSR, HE3); 

iii) the catalytic burner (CB); iv) the H2 separation area (HE7, C1, HE4 Pd-M); v) H2 

compression area (C2, IC and the two intercoolers); vi) the heat recovery section (HE2, HE3, 

HE6 and HE5).  

 

 
Fig. 3. Irreversibilities and Exergy Losses of the different MES functional section 

Figure 3 presents the MES irreversibility contribution divided by functional area; it can 

be noted that, the chemical process area accounts for the 39% of the overall exergy 

destruction and loss, while the CB, the H2 separation area and the H2 compression area 

contribute with 18%, 15% and 12%, respectively. 
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4 Conclusions 

In the proposed system layout, the biogas, produced in an anaerobic digester, is used to feed 

a poly-generation unit (or a multi-energy system, MES) that consists of a fuel processing 

unit, an SOFC (Solid Oxide Fuel Cell) power unit and a hydrogen separation and storage 

unit. The system has been sized taking into account the most common output from an organic 

fraction of municipal solid waste feeding anaerobic digester (biogas production with a 

composition of 60%CH4 and 40% CO2), and the MES internal power consumption in order 

to optimize the compressed hydrogen production. The irreversibility of the main components 

have been taken into account, by identifying the ATR (the Auto-Thermal Reforming reactor) 

as the main contributor to the global exergy destruction (9.74% of the input biogas exergy) 

together with the catalytic burner (responsible for the 6.68%). Not negligible irreversibility 

are introduced by the heat exchangers, which globally destroy the 9.71% of the exergy due 

to the heat transfer trough finite temperature difference; this phenomena is enhanced in case 

of the water phase changing, as it occurs in the exchanger HE1. 

The overall system shows an exergetic efficiency (ε) of of 53.1% for the combined 

hydrogen and heat production (37.7%, taking into account just the H2 production)..  

Further efforts should be made in order to enhance the technical performance of the 

system by testing different chemical reactors options and by optimizing the heat recovery 

process. 
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