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Abstract. Photovoltaic (PV) systems constitute one of the most promising 

renewable energy sources, especially for warm and sunny regions like the 

southern-European islands. In such isolated systems, it is important to utilize 

clean energy in an optimal way in order to achieve high renewable 

penetration.  

In this operational strategy, a Battery Energy Storage System (BESS) is most 

often used to transfer an amount of the stored renewable energy to the peak 

hours. This study presents an integrated energy management methodology 

for a PV-BESS energy system targeting to make the load curve of the 

conventional fuel based units as smooth as possible. The presented 

methodology includes prediction modules for short-term load and PV 

production forecasting using artificial neural, and a novel, optimized peak 

shaving algorithm capable of performing each day’s maximum amount of 

peak shaving and smoothing level simultaneously.  

The algorithm is coupled with the overall system model in the Modelica 

environment, on the basis of which dynamic simulations are performed. The 

simulation results are compared with the previous version of the algorithm 

that had been developed in CERTH, and it is revealed that the system’s 

performance is drastically improved. The overall approach proves that in 

such islanding systems, a PV-BESS is a suitable option to flatten the load of 

the conventional fuel based units, achieve steadier operation and increase 

the share of renewable energy penetration to the grid. 

1 Introduction 

In island energy systems, smooth operation of the generation units is associated with power 

quality improvement and promotes the enhanced Renewable Energy Systems (RES) 

penetration to the energy system [1]. The schemes that are responsible for the optimum 

operation through the power flow control are usually referred to as Energy Management 

Systems (EMS). An important function that is encountered by these systems is load shifting 

or load shaving [2]. In this procedure, the battery contributes to the formulation of a smooth 
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load profile by filling the valleys (storing energy) and eliminating the peaks (discharging the 

stored energy). Based on this ability, smart algorithms produce the dispatch plan according 

to load forecasting and intermittent sources’ production. 

It is evident that accurate forecasts play a major role in system operation. Load forecasting 

is usually classified by the time-horizon or the lead time. Forecast horizons from one day and 

up to one-week ahead are referred to as short-term load forecasts (STLF) [3]. Among the 

various proposed approaches on this topic, data driven approach seems promising and can be 

found in many studies [3–5]. PV forecasting models can be classified into two categories: 

indirect and direct models [6,7]. In the indirect models, the emphasis is given in forecasting 

solar irradiance, which is then used alongside other associated data as inputs in commercial 

PV simulation software to obtain the power generation. On the contrary, in the direct 

forecasting model, PV generation is directly calculated using historical meteorological and 

power production data. A comparison of the two methods can be found in [8]. 

In our group’s recent publication [9], a small southern-European island power system 

(yearly load peak ≈ 1.5MW) was examined, composed of Diesel Generators (DG), a 300kWp 

PV farm and a Battery Energy Storage System (BESS) of 2MWh capacity. A predictive EMS 

capable of shaving the demand peaks with stored renewable energy, smoothing the operation 

of the DG and diminishing the ramp ups that occur before the night hours was presented. The 

methodology included forecasting and clustering of the load, followed by a custom power 

flow scheduling algorithm, responsible to perform peak shaving. However, the height of the 

peak shaved was arbitrarily predefined and set equal for all days of the year. The value of 

this height was a parameter that after the trial-and-error procedure was found appropriate. 

The present study continues the development of the aforementioned EMS, while 

introduces the following advancements: a) complete, end-to-end methodology, b) integration 

of the PV forecasting module, c) revised peak shaving algorithm, maximizing the shaved 

amount of each day, d) shift to non-proprietary tools: Python and Modelica. 

As in other similar studies, the proposed EMS performance is evaluated by dynamic 

simulations before proceeding to prototype. The proposed EMS was simulated against real 

weather conditions utilizing custom built components, e.g. battery and PV. The simulations 

were carried out in the Dymola modelling environment, which uses the well-established 

Modelica language. In this way, the exploitation of the system’s strengths and weaknesses 

became possible. 

2 Load and PV Forecasting Modules 

Optimal utilization of RES requires accurate load and production forecasts, able to 

compensate for future events. In this framework, two forecasting modules were developed 

which form the base on which EMS will optimize the system operation. 

The load forecasting module was implemented using a feedforward Artificial Neural 

Network (ANN) with 79 input neurons, one single hidden layer of 20 neurons and 24 neurons 

as output (79-20-24). The inputs of the network are based on input variables common for 

similar networks referred in load forecasting studies [4] and include a) 48 values of the hourly 

consumption data of the two previous days, b) 24 values of previous day temperature data 

and c) 7 binary values corresponding to the day of the week. The network output consists of 

a 24-variable vector containing the forecasted next day’s hourly load values. The module’s 

structure is schematically depicted in Fig. 1. The network was trained using the 

backpropagation algorithm that uses the square error as the loss function. The training 

algorithm that gave the best approximations was limited-memory Broyden–Fletcher–

Goldfarb–Shanno (l-BFGS). 
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Fig. 1. Load forecasting using ANN 

Regarding the PV forecasting module, various methods were tested and Support Vector 

Regression (SVR) was selected as it produces the best estimations. As in many other studies 

[8,10-12], this method is used to correlate the inputs, usually irradiation and temperature, 

with the output, which is the power production of the PV. The PV forecasting module 

structure is depicted in Fig. 2. The used kernel function, which maps the data to a higher 

dimension in order to become linearly separable (as SVR can only perform linear 

separations), is the Radial Basis Function (RBF). 

 
Fig. 2. PV forecasting using SVR 

The development was carried out in Python utilizing the well-known open-source 

machine learning framework “scikit-learn” [13]. The feature datasets of each module were 

pre-processed using the min-max normalization function which scales them down to [0, 1] 

interval. The needed historical meteorological data, i.e. hourly time-series of temperature and 

irradiation, were obtained from ERA5 climate reanalysis dataset produced by the European 

Centre for Medium-Range Weather Forecasts [14]. 

The modules were trained using data of the years 2014, 2015 and 2016 and produced 

forecasts for the year 2017, which were evaluated against the real year’s values. Normalized 

Root Mean Square (nRMSE) is the metric that was considered most suitable to this 

application with corresponding values 0.037 and 0.092 for the load and PV forecasts, 

respectively. The forecasts were then imported in the scheduling algorithm which plans the 

optimized dispatch plan as described below. 

3 Peak Shaving Algorithm 

The present section continues the development of the peak shaving optimization algorithm 

presented in [9,15]. The initial version of the algorithm included a clustering procedure to 

separate the load profiles with a clear peak during evening hours. This task was necessary in 

order to restrict the application of the algorithm on a specific load shape. Furthermore, an 

arbitrary value of the shaved area was set, that was decided after a trial-and-error procedure. 

In this study, the focus is on optimizing the amount of the achieved peak shaving 

alongside the overall simplification of the algorithm, making it applicable on a broader 

spectrum of load profile shapes. Initially, the two 24-value vectors representing the next day’s 

load and PV forecasted values are inserted as input into the algorithm. Then, the difference 

of the load and PV curves is calculated, which refers to the DG production in the case of no 

battery installation. An important variable corresponds to the amount of energy needed for 

the flattening of the conventional generation curve. This amount is initialized with the 

maximum value available for peak shaving, and if flatness is achieved with less than this 

amount, the procedure will be terminated. In the case where maximum utilization is desirable, 

a following while loop is responsible to lower the already flatten curve until the remained 
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capacity is used. The maximum available energy parameter can be set for example as a 

percentage of the total solar energy for the particular day. In general, through this parameter, 

system operators can easily implement their own tailor-made strategy, which corresponds to 

their particular needs and size of their system components (batteries and PV capacities). 

The main algorithm includes two while loops cascaded inside another while loop. The 

two cascaded loops are responsible for calculating the heights of two level lines: the offset 

level, referring to the charging of the battery, and the shave level indicating the discharge of 

the battery and consequently peak shaving. 

An important perk of the present approach is the fact that the battery only stores renewable 

energy that is generated from the PV plant. This is accomplished by the innermost if 

statement of the first while loop, where the charging plan is drawn. Another approach, 

simpler to implement, would be to neglect the relatively small amounts of non-renewable 

energy that may be stored in the BESS and concentrate only in the flatness of the output. 

However, we chose to include the relatively complicated version as any simplifications can 

be easily applied. Another attribute of this algorithm is that the charging and discharging 

energy amounts of each day are equal (assuming perfect forecasts). The corollary of this 

feature implies the ability of the system operator to define the shaved amount of each day as 

a percentage of the battery’s cycle. In this way, the batteries’ ageing that occurs due to cycling 

can be managed and thus the batteries can be fully exploited through their lifecycle. The 

algorithm output is the 24-value vector of the battery hourly setpoints which can be directly 

imported in a dynamic simulation environment for further analysis. 

4 Dynamic Models Development 

Dynamic simulations have become an indispensable tool for energy system designers as they 

assist them in understanding the overall systems’ behavior. In the context of the present study, 

the islanded MicroGrid (MG) under consideration includes a fossil-fuel based power plant 

with DG, a PV plant and a lithium-ion BESS. In this Section, a brief description of the 

developed MG model alongside with its components will be given. 

PV cells are modelled using the equivalent electrical circuit, which consists of a current 

source connected in parallel to a diode and a resistor, and in series with another resistor [16]. 

The battery was also modelled with its equivalent electrical circuit as in [17], consisting of a 

voltage source in series with its internal impedance, represented as two series resistor and 

two RC networks. Although the battery model can consider both cycling and calendar ageing, 

these effects were neglected in the context of this study. PV and BESS were interfaced with 

the 3-phase AC grid through ideal average inverter models. The developed components were 

coupled with the open-source PowerSystems library [18] to form the MG dynamic model. 

The complete methodology is depicted in Fig. 3. 

 

Fig. 3. Followed methodology for the EMS development 
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5 Results and Discussion 

A set of metric indicators were employed to evaluate the proposed algorithm and are listed 

in Table 1. These indicators were calculated for the three cases: i) no BESS installation in the 

system as the reference case, ii) the previous algorithm’s version [9], and iii) the current 

improved version. The first indicator was calculated by lowering the signal until its mean 

value became 0 (by subtracting the mean value) and calculating the standard deviation of the 

points. The second indicator is the fraction of the curve’s length to the length of the time 

axes. The minimum value of this indicator is 1 and is achieved when the curve becomes a 

straight horizontal line. 

Table 1. Flatness indicators of the resulted yearly curves. 

 Standard Deviation curve length/ x axis length 

i) Reference case (no BESS) 0.1740 1.00249 

ii) Previous Algorithm’s Version 0.1716 1.00172 

iii) Current Algorithm’s Version 0.1571 1.00135 

Modelica simulations confirmed that such methodology is beneficial even when there are 

significant inaccuracies in the forecasting estimations, occurring due to insufficient data 

amounts. Fig. 4 presents the resulted DG operation for the three aforementioned cases.  

Fig. 4. Resulted yearly DG’s operation (blue: Reference, magenta: Previous Version, green: Current 

Version) 

The improvement in the overall DG operation can be noticed by the change of colors in 

the peaks of the yearly curve. Furthermore, in the zoomed area corresponding to a week 

duration, the diminishing of the ramp-ups that occur right before the night hours can be 

recognized. From the above results, it is evident that the proposed methodology considerably 

improves the system’s behavior. 

6 Conclusions 

We are currently experiencing a major challenge of islanded energy systems towards high 

RES penetration combined with smart grid solutions. In this regard, EMSs are constantly 

gaining attention due to the need for optimal utilization of clean energy production. This 

study proposes an improved EMS methodology consisting of DG, PV fields and BESS that 
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smoothens the operation of DG permitting higher renewable penetration. These 

improvements will contribute to the development of a fully autonomous EMS controller for 

islanded systems, which maximizes the RES share. 
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