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Abstract. Modern electricity consumers place increasingly high demands on the level of reliability of 

power supply and, correspondingly, the reliability of electric power systems (EPS). These requirements 

should be directly addressed in the EPS development planning tasks. To this end, the evaluation of the level 

of EPS reliability is performed by employing software and computer systems that have various methods of 

reliability evaluation implemented therein. Among the variety of methods for  identifying reliability 

indicators to evaluate resource adequacy the most appropriate one is the Monte Carlo method (the method 

of statistical tests): it enables to perform calculations within a reasonable time with the required accuracy, 

while the calculation of complex EPS-like systems by means of analytical methods proves impossible 

because of the large dimensionality of the problem. However, even when using the Monte Carlo method, 

the difficulties arise as well, namely the problem of the need to reproduce a large number of random states 

of the simulated EPS and the calculation of the operating mode of each of them. There are several ways to 

reduce the overall calculation time by either efficient random number generators and optimizers or 

alternative methods of the calculation of operating modes. The article deals with the issue of bringing up to 

date the method behind reliability calculation that makes use of the Monte Carlo method. We propose to use 

regression analysis methods when calculating operating modes of random states of the EPS. To this end, we 

adopt the support-vector machine and the random forest method. Experimental studies covered in the article 

attest to the efficiency of the new method, for the 24-node system IEEE RTS-96 the calculation speed has 

been increased by almost a factor of 4 while maintaining accuracy.  

 

1 Introduction 

When planning the development of electric power 

systems (EPS) and justifying the construction of new 

power plants and networks, one has to evaluate the 

economic consequences of the measures to be taken. For 

this purpose, many different factors are considered, 

including the reliability of power supply to consumers, 

which in turn depends on the reliability of the EPS. We 

study resource adequacy as applied to the problems of 

EPS development planning. 

Adequacy assessment is carried out using the 

mathematical models of EPSs that simulate their 

operation [1-3]. Among the variety of methods for 

identifying reliability indicators for adequacy 

assessment, the most appropriate one is the Monte Carlo 

method (the method of statistical tests): it enables to 

perform the reliability calculation within a reasonable 

time with the required accuracy, while the calculation of 

complex EPS-like systems by means of analytical 

methods proves impossible because of the large 

dimensionality of the problem [4]. 

The methodology behind the evaluation of the 

resource adequacy of the EPS that is based on the Monte 

Carlo method is made up of the three computational 

steps: 

1. The stage of defining the set of states of the EPS. 

At this stage, a set of random states of the considered 

EPS is defined. By a random state we understand such 

configuration of the equipment that is part of the EPS 

that have the performance of each of its components as 

determined randomly based on the statistical data on 

their failure rate.  

2. The stage of calculating the operating modes for 

the defined states. 

At this stage, for each defined random state of the 

EPS, we calculate the established operating mode that is 

optimal with respect to minimizing the power shortage.  

3. The stage of calculating reliability indicators. 

At this stage, the reliability indicators are calculated 

by statistical processing of the results obtained at the 
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second stage.   

When solving the problem of adequacy assessment, 

the most challenging is its dimensionality [5]. To 

achieve acceptable accuracy of the result one has to 

define and calculate a large number of states, the number 

of which depends on the complexity of a given EPS. Due 

to the computational complexity of the second stage, the 

overall calculation for the problem of adequacy 

assessment of the EPS may take an unacceptably long 

time, which reduces the efficiency of the EPS design.  

This paper proposes a modification of the method of 

adequacy assessment by the Monte Carlo method with 

the aid of machine learning methods [6]. The essence of 

the proposed modification is to divide the total number 

of random states obtained at the first stage of adequacy 

assessment of the EPS into two sub-samples. After 

obtaining the power shortage values at the second stage 

for the first sub-sample, a training sample is defined. It is 

a set of key-value correspondences for each random 

state, where the key is a description of the performance 

of the EPS equipment and the loads at the nodes, while 

the value is the calculated value of the power shortage of 

the system. The remaining states from the second sub-

sample are no longer processed at the computationally 

intensive second calculation stage, the power shortage 

value for the state is determined by the method of 

machine learning calibrated by the training sample. The 

problem of this kind is referred to as the regression 

analysis problem [7]. 

2 The algorithm of the application of 
machine learning to the problem of 
adequacy assessment of the EPS. 

The regression problem. 

We propose to divide the set of random states 

obtained during the first stage into smaller (subject to 

training) and larger (subject to analysis) samples. The 

calculation algorithm for each sample will be different: 

1. The evaluation of the power shortage for the states 

of the first sample is similar to the initial one (the first 

and second stages of the calculation) except that the 

description of the states themselves, as well as the result 

of the calculation, will define a training sample, on the 

basis of which the regression model will be built.  

2. Training of the regression model. 

3. In order to estimate the power shortage for each 

state of the analyzed sample at the second stage of the 

calculation, a regression model that is more efficient 

with respect to its time-intensity is used instead of 

optimization methods.  

In the given problem of estimating the state-specific 

shortage based on the configuration of the EPS 

equipment performance, it is required to construct a 

regression model approximating the target dependence 

of XA → L between a set of XA entities and a set of all L 

responses for the entities of the training sample S. In 

regression analysis, XA represents a set of all states of the 

EPS, and L represents a set of all shortages specific to 

such states. 

Each data entity �̅�𝑎 ∈ 𝑋𝐴, 𝑎 =  1, … , 𝐴. represents a 

vector in the d-dimensional space and is descriptive of 

the state of the EPS, where d is the number of features of 

the entity that describe this state, A is the number of all 

possible states of the EPS.  

Training sample S is formed from a set of entities XU, 

for which the value of the shortage level of the state of 

the EES is known: 

𝑆 = ((�̅�1, 𝑙1), (�̅�2, 𝑙2), … , (�̅�𝐼 , 𝑙𝐼)), (1) 

where �̅�𝑖 ∈  𝑅𝑑 ;  𝑙𝑖 ∈ 𝐿; 𝑖 = 1, … , 𝐼; I is the number of 

objects in the training sample, XU is the set of states of 

the EPS handled at the first stage, XU ∈ XA. The number 

of entities I in the training sample and, accordingly, their 

relation to the number of entities of all states, is set by 

the user as per the principle of achieving the best trade-

off between accuracy and speed. 

The classification problem. 

The problem of classification differs from the 

problem of regression analysis in the way of processing 

power shortages of random states. The algorithm behind 

its operation also consists of three steps, but instead of 

training the regression model, it is the classification 

algorithm that is trained. This requires the preparation of 

data, as the L responses in the training sample now 

represent a certain group, i.e. a class. In the problem of 

adequacy assessment L ∈ [-1, 1], where -1 means a 

shortage-free state and 1 means a shortage state. For this 

reason, the third step of the calculations is also modified. 

Here, for each state of the EPS from a larger sample, the 

classifier predicts its level of shortage and, if it is 

shortage-free, this state is not analyzed for the 

availability and magnitude of the shortage, while the 

power shortage in the reliability zones and the EPS as a 

whole is assumed to be equal to 0. If the algorithm 

classifies the state as a shortage, the exact power 

shortage value is determined at the second calculation 

stage. This reduces the number of states handled therein. 

Modification of the Monte Carlo method by means of 

classification has been discussed in detail in previous 

studies [8]. This article assesses the advantages the 

regression model has over them.  

Both problems are based on regression [9]: 

dependence of the expected value of a random variable 

on one or several other random variables (free variables): 

𝐸(𝑦|𝑥) = 𝑓(𝑥), (2) 

Regression analysis is the search for such function f 

that describes this dependence. For this purpose, we set a 

regression model that in its generic form is as follows: 

𝑓: (𝑊 ∗ 𝑋) → 𝑌, (3) 

where W is the set of all parameters, 𝑥 ∈ 𝑋 is the space 

of free variables, Y is the space of dependent variables. 

Since the regression analysis assumes the search for the 

dependence of the expected value of a random variable 

on free variables (2), the function (3) will include 

random variable e: 

𝑦 = 𝑓(𝑤, 𝑥) + 𝑒, (4) 

One has to find such parameters w, which would 

provide the least error between the actual values of the 

dependent variable and the reconstructed ones when 

substituting them into function 𝑓(𝑤, 𝑥). 

The classification problem differs from the 

regression problem in that the dependent variable y takes 
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one of the two values 0 or 1, and the dependence 

function is the probability of the event y=1: 

𝑃{𝑦 = 1|𝑥} = 𝑓(𝑧), (5) 

where f is the logistic function (sigmoid function): 

𝑓(𝑧) =
1

1 + 𝑒−𝑧
, (6) 

and where z = (𝑊 ∗ 𝑋). 

The sigmoid function will change within (0, 1) and 

thus the classification problem gets solved, entity x can 

be classified as belonging to the class y=1, if the 

probability predicted by the model 𝑃{𝑦 = 1|𝑥} > 0.5, 

and can be classified as belonging to the class y=0 

otherwise. 

Just like in the regression problem, one has to find 

such parameters w, which would provide the least error 

between the actual values of the dependent variable and 

the reconstructed ones when substituting them into the 

function 𝑓(𝑤, 𝑥). 

The efficiency and applicability of the regression 

analysis are determined by the advantage in the speed of 

the calculation and, consequently, by the reduction of the 

time spent. However, increasing the complexity of the 

method by introducing machine learning methods and 

the associated time spent on defining training samples, 

model training, selection of hyperparameters, and 

prediction should be compensated by time savings due to 

reducing the number of calls to optimization methods. 

Hence, it follows that a potentially successful algorithm 

of machine learning for solving our problem should 

differ not only in its accuracy but also in its overall 

execution speed at all the above-mentioned stages of its 

operation. 

3 Experimental calculations 

To evaluate the proposed methodology, a series of 

experiments was conducted to determine the power 

shortage of the EPS. The 24-node IEEE RTS-96 was 

used as the system under study [10], the diagram of 

which is presented in Figure 1. The main characteristics 

of nodes and links are given in [10]. This system is 

characterized by high reliability and being shortage-free, 

so as the single operation mode for all calculations we 

chose the most intense one, with the highest load on 

December 17, 18:00.  

 
Fig. 1. IEEE RTS-96 24-node system diagram. 

 

In total, three groups of calculations of 5 

computational experiments were carried out within the 

scope of the experiment:  

1)  Determination of the power shortage of the EPS 

without applying machine learning methods. The 

obtained result was later used as a benchmark to assess 

the accuracy of the proposed methods and their 

computational efficiency.  

2)  Determination of the power shortage of the EPS 

with the use of machine training. The problem of 

machine learning is stated as a classification problem.  

3)  Determination of the power shortage of the EPS 

with the use of machine training. The problem of 

machine learning is stated as a problem of regression 

analysis.  

The results of the first stage are shown in Figure 2. 

Values of the power shortage of the EPS are obtained in 

the conventional way that makes no use of machine 

training methods. In each calculation, 30,000 random 

system states were considered. Table 1 shows the time 

taken to perform each calculation. 

 
Fig. 2. The expected value of the power shortage as per the 

conventional calculation. 

Table 1Time of execution of each calculation experiment and 

the average over them. 
Calculation 1 2 3 4 5 

Execution 

time (sec) 236.94 237.012 235.958 238.579 238.595 

Average 

execution 

time (sec.) 
237.4168 
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The chart shows that the average value of the 

established expected value of the power shortage for all 

five experiments is equal to 39 MW. The deviation of 

the calculation time is caused by a unique set of 

calculated states in each calculation experiment.  

At the second stage, the support-vector machine 

(SVM) was used, that is the classification method that 

showed the best results according to the results of the 

comparative analysis of machine learning methods in 

[8]. The training sample was 5% of the total number of 

random system states. Figure 3 shows the results of a 

series of calculations, and Table 2 shows the time taken 

to perform each of them. Table 2 also shows the number 

of states marked as shortage-free by the model. 

 

 
Fig. 3.  The expected values of the power shortage in the 

calculation using the SVM method for the classification of the 

power shortage level of operating modes. 

 
Table 2.Runtime and the number of rejected shortage-free 

states of each calculation experiment and the average over 

them. 
Calculation 1 2 3 4 5 

Execution  
time (sec) 

139.962 142.447 142.256 140.854 141.929 

Average 

execution 

time (sec) 

141.4897 

The number 

of rejected 

shortage-free 
states 

19,400 19,231 19,236 19,347 19,351 

The average 

number of 
rejected 

shortage-free 

states 

19,313 

 

As can be seen from the table, the average speed of 

the calculation increased and amounted to 141 seconds 

instead of 237 seconds for a similar calculation. As can 

be seen from the figure, the accuracy is preserved, with 

the spread in values not exceeding 4% of the reference 

value. The value of the established expected value falls 

within [38.2, 40.8]. 

At the third stage, the problem was transformed into 

a simpler problem of regression analysis. The random 

forest method was used for the calculation. The training 

sample was 5% of the total number of random system 

states. Figure 4 shows the results of a series of 

calculations, and Table 3 shows the time taken to 

complete each of them. 

 

 
Fig. 4. The expected values of the power shortage in the 

calculation using the RF method to determine the power 

shortage level of operating modes. 

  
Table 3Time of execution of each calculation experiment and 

the average over them. 
Calculation 1 2 3 4 5 

Execution 

time (sec) 
84.0492 84.2189 85.9105 85.1065 85.2673 

Average 

execution 

time (sec) 

84.910488 

 

The result yielded by the experiment shows that the 

calculation time was reduced to 85 seconds and 

amounted to only ~25% of the initial time. As can be 

seen from the figure, the accuracy is preserved, with the 

spread in values not exceeding 3% of the reference 

value. The value of the established expected value falls 

within [38.8, 40.1]. 

4 Conclusion 

The computational efficiency of the means of evaluating 

the reliability of the EPS is one of the criteria that is to 

be met for their efficient application to real-world 

problems Reduction of time of the calculation of the 

system will enable to reduce the requirements for 

computational resources and to expand the scope of 

problems for which the method can be applied. 

Within the scope of this study, we proposed a method 

of modification of the conventional method of the power 

shortage calculation by means of the Monte Carlo 

method. Its application makes it possible to significantly 

increase the speed of calculation of the EPS reliability 

indicators.  

Experimental studies reported in the article confirm 

the efficiency of the new technique with the speed 

increase in the case of the 24-node system IEEE RTS-96 

amounting to 153 seconds, which is to say that the speed 

of calculation increased by nearly a factor of 4.  

The efficiency of the proposed methodology can 

therefore be concluded. 
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