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Abstract. We consider mathematical models for analyzing the energy supply reliability of isolated systems 

and propose a three-level complex of nested models. The lower level represents the model of functioning of 

the energy supply system during the period under review. The second level is a model of the energy supply 

reliability analysis. This analysis is based on multiple simulations of functioning of the energy supply 

system in randomly formed conditions. The energy sources demand and supply, as well as the amount of 

carryover reserves of energy in storage, are assumed to be random values. To simulate functioning, the 

values of energy demand and production are formed using the Monto-Carlo method following their laws of 

probability. The random value of the carryover reserves is formed using the algorithm that generates the 

Markov sequence of these reserves. The upper level is represented by the model for selecting the optimal 

composition of the means ensuring reliability, i.e. energy reserves in the energy production and storage 

capacity. It was revealed that the algorithm for generating the random value of the energy sources carryover 

reserves yields the homogenous Markov sequence. Sufficient conditions for uniqueness of the stationary 

state were determined. Based on the experimental calculations, we estimated the number of iterations 

required to reach the stationary ergodic state. 

1 Introduction 

The issue of energy supply reliability for remote 

settlements is of particular importance and requires a 

special study. There are several reasons for that. First, 

fluctuations in the demand and production of energy 

resources depend on random factors, which stipulates 

development of special models adapted for research in 

random conditions. Second, damages caused by 

shortages are much bigger than in areas close to 

transport routes due to the limited conditions for 

maneuvering, haulage, and, in some cases, the limited 

timing for energy resources delivery and poorly 

developed transport infrastructure.  

This paper presents the models developed to analyze 

and optimize the efficiency and reliability of energy 

supply to remote communities from sources subject to 

strong influences of random factors. This property is 

typical for energy supply systems operating on 

renewable sources (e.g., systems based on the biomass 

grown on energy plantations, local wind and solar 

electric power systems). 

Significant deviations in the production of energy 

from renewable energy sources may be caused be 

fluctuations of natural and meteorological conditions (air 

temperature, wind force, solar radiation). Significant 

deviations from the average expected energy demand 

can also take place. They may be caused by changes in 

climatic conditions, production needs, etc. Adverse 

conditions created by increased demand or reduced 

volume of energy production may result in shortages 

accompanied by economic damages that happen, for 

example, due to the need for expensive emergency 

supplies of additional energy from remote sources or the 

use of electricity from expensive sources (e.g. diesel 

power plants). 

In addition to these two random exogenous 

indicators, a third random factor should also be taken 

into consideration – the amount of carryover reserves of 

energy. If during one of the periods the energy 

consumption is lower than the average value and (or) the 

volume of energy production is higher than the average 

expected value, then energy production in this period 

may exceed the demand. Then the difference between 

the volume of production and consumption goes as a 

reserve for the next period. For local energy supply 

systems, electric energy accumulators can be used as 

such energy storage devices.  

Otherwise, when consumption exceeds production, 

the available reserves are used. If these reserves are 

exhausted, then the resulting shortage can be covered by 

more expensive energy resources. For local energy 

supply systems, diesel power plants can be used as such 

additional sources. Boiler and furnace fuel supply 

systems use long-haul fuel.  

As a means of ensuring the energy supply reliability, 

we consider creation of capacity reserves in the 

production of energy resources from the source under 

study γ  and creation of storage tanks with storage 
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capacity z  for carryover reserves. Values γ and z are 

the optimized indicators. Both of these variables are 

assumed to be dimensionless, measured in fractions of 

the mathematical expectation for the energy demand per 

the unit of time in question. 

Let Q  be the mathematical expectation of the energy 

demand per unit of time and R  be the mathematical 

expectation of the energy production per unit of time. 

The capacity reserve is measured as a relative excess of 

the mathematical expectation of production over the 

mathematical expectation of demand per unit of time: 

                            ./)(γ QQR   (1) 

We consider the algorithm of forming carryover 

reserves of energy, which can be interpreted as an 

imitation of a long-term change in reserves as a result of 

random realizations of production and demand in each 

period. 

2 Random factors affecting reliability 

Our model takes into account three random variables: 

average annual demand, average annual production 

volume, and energy resources carried over from one 

period to another. The first two random variables are 

implemented directly by the Monte Carlo method; the 

third one is produced iteratively during the most repeated 

simulation of the functioning of the energy supply 

system. 

2.1 Random energy demand variable 

The demand of settlements for energy, especially in rural 

areas, is largely associated with domestic heating 

problems. Therefore, random deviations of energy 

demand vQ  are mainly caused by deviations in the 

duration of heating periods and average winter 

temperatures. Using the data on the average daily 

outdoor temperature [1] accumulated over many decades 

we can determine the possible deviations of demand for 

energy resources.  

Let T...,,=1τ  be the numbers of the past heating 

periods with the available data on average daily 

temperature. Denote by τN  the duration of the heating 

period τ  in days. In the calculations presented below, 

we assume that the heating period starts/ends after the 

average daily air temperature stayed below/above 8 °C 

for five days in a row [2; 3]. 

To describe possible fluctuations in energy 

consumption, we will use deviation of energy demand 

for heating during one of the heating periods from the 

average expected level  

                                ,...,T=,B/=Bb 1τττ , (2) 

where τB  is the indicator of the integral temperature 

difference for the heating period calculated by the 

formula 

                            
τN

χ=
τχτ ,...,Tτ=,tt=B

1

1)ˆ( ; (3) 

B  is the average for all considered heating periods 

integral difference between the indoor and outdoor 

temperatures: 

                                    
T

τ=

B
T

=B
1

τ

1
, (4) 

Here t̂  is the standard indoor temperature; τχt  is the 

average outdoor temperature on the day χ  during the 

heating period τ . 

In the model of energy supply reliability analysis 

[4; 5], the random variable generation for the energy 

resources production is performed using a random 

number sensor. This sensor selects one of the values 

from the past periods of observations for the relative 

deviations of the integral temperature difference τb , 

calculated by formula (2). It then calculates a random 

value of energy demand. Then the random energy 

demand variable is found as  

                                       Q=bQv  ,  (5) 

where b  is a value of relative deviation of the integral 

temperature difference randomly selected from the set 

T,...b ,1τ,τ  ; Q  is a mathematical expectation of energy 

demand. 

The boundaries of the interval of possible values 

][ 21 Q,Q  of the random energy demand variable are 

determined by the rules: 

                                   QbQ 
τ

1 min ; (6) 

                                   QbQ 
τ

2 max . (7) 

2.2 Random energy production variable 

Significant deviations in the energy production might 

occur due to natural and human factors. To estimate 

possible deviations in energy production and the 

probability of their realization, we use a truncated 

normal law with the expertly estimated and varied range 

of possible values and dispersion 

When analyzing the reliability and efficiency of a 

particular set of backup means, we assume that we are 

given the mathematical expectation of energy production 

R , the  standard deviation variable σ  and the 

coefficients that determine the interval ][ 21 R,R of 

possible values for a random energy production variable. 

The boundaries of these intervals are set by the rules  

                                       RR 11 δ , (8) 

                                      RR 22 δ  (9) 

The random energy production variable is chosen by 

the Monte-Carlo method from the interval ][ 21 R,R using 

the probability density function )(RP  which stays 

positive at the specified interval and turns into zero 

outside of it.  

                                  




2

1

1)(
R

RR

dRRP ; (10) 

                            ],[,0)( 21 RRRRP  .  (11) 

                            ],[,0)( 21 RRRRP  . (12) 
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2.3 Random variable of the carryover reserves 
of energy resources energy production variable 

We are not able to estimate realization probabilities for 

the variable of the energy resources carryover reserves, 

because they depend not only on the realization 

probabilities of last year production and demand, but 

also on the reserves from the year before and, 

correspondingly, their probabilities. We assume that the 

probability law for the carryover reserves in the 

beginning of the specified and the next periods is the 

same.  

3 The system of nested models for 
analyzing and optimizing the reliability 
of energy supply to remote settlements 

To analyze and optimize the means of energy supply 

reliability for remote settlements, we propose a system 

of three nested models [4]: simulation model for the 

power supply system operation during one period; 

reliability analysis model; model for optimization of 

energy system reliability. 

The mathematical expectation of the annual demand 

for energy resources Q  and the specific losses caused by 

energy shortages μ  are exogenous for calculations. 

Simulation model of the energy supply system. Denote 

by vu  the inventory balances of energy resources after 

the integration v . Denote by Vv ,...,0  the iteration 

number of the simulation. The value 00u  is given. The 

amount of reserves carried over to the next period is 

determined on the basis of the known reserves from the 

previous period: 

                        .,...,0   ,min 1 Vvz;u=s vv   (13) 

This expression takes into account the energy storage 

capacity z . 

The available energy is defined as the sum of the 

produced energy and reserves from the previous period:  

                                      .vvv s+R=RR   (14) 

Shortage at the iteration v is defined by the formula  

                                .)( +vvv RRQ=D    (15) 

According to (15), the shortage occurs when the 

demand exceeds the available resources, otherwise the 

shortage is equal to zero. Here, the function +)(x  with 

respect to the real x  is a non-negative cut-off function: 

 .0max)( + x,=x  

The balance of energy forms when the energy 

demand is less than the available energy: 

                                     .)( +vvv QRR=u   (16) 

The model for analyzing energy supply reliability 

is based on the repeated imitation of the energy system 

functioning during a single time period 

The simulation model calculates indicators 

characterizing the functioning of the energy system at 

each iteration. Upon passing through all iterations, 

generalized indicators of reliability and average energy 

supply costs are calculated. 

1. The mathematical expectation of shortage  

                                  .
1

1


V

v=
vD

V
=MD   (17) 

2. The shortage probability  

                                     ,
V

TD
=PD  (18) 

where TD  is the number of samplings when shortage 

occurs 

                                 .)sgn(
1


V

v=
vD=TD  (19) 

Here 

                          .
0если0,

0если1,
)sgn(









v

v
v

D

D
=D  (20) 

3. The mathematical expectation of the cost for 

ensuring the reliability and repair of damage caused by 

shortages  

                ,),,,(γΔ
1

μ),(γ
1





V

v
vvv sRzC

V
MD=zF  (21) 

where μ  are damages per unit (include the cost of 

stock energy resources). 

The upper level of the nested models system is a 

model for optimizing the means for ensuring the 

energy supply reliability.  In the reliability optimization 

model, we study and solve a two-parameter optimization 

problem  

                                  min,),(γ zF  (22) 

                                         ,0γ   (23) 

                                        .0z  (24) 

The optimization is carried out by comparing values 

of the function ),(γ zF  when successively varying the 

value of each of the arguments (for example, using the 

coordinate descent method). To solve the problem of 

one-dimensional optimization, the golden section 

method can be applied. 

4 Algorithm for changing the random 
variable of carryover energy reserves 

Calculation of the amount of the carryover energy 

reserves at the beginning of the next iteration can be 

represented as the following rule: 

                                z;sL=s vvv   )(min1 . (25) 

Here vL  is the difference between the random 

variables of energy production and consumption  

                                       vvv QRL  . (26) 

This variable QRL   is a difference between a 

variable R  with a given continuous probability density 

(10) and a discrete random variable Q . Let TiQi ,...,1,   

be the ordered ascending set of values .Qb  

                                   21
1 , QQQQ

T
 ; (27) 

                                1,...,1,1   TiQQ ii . (28) 

Since we assume that probabilities of meeting the 

demands iQ  are equal, the probability density L  is 

found based on the probability density R  by the formula  

                                )(
1

)(
~

1
i

T

i

QLP
T

LP  


. (29) 
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The random variable L  may have a positive 

probability density only on the interval ][ 21 L,L , where 

                                        211 QRL  ; (30) 

                                        122 QRL  . (31) 

Further, we suppose that  

                  1,...,1),max( 1
12   TiQQRR ii . (32) 

In other words, the variables iQ  are located densely 

enough. Then, according to (10), (27)-(29), the random 

variable L  has a positive probability density on the 

whole interval ][ 21 L,L : 

                                      




2

1

1)(
~L

LL

dLLP ; (33) 

                                ],[,0)(
~ 21 LLLLP  ; (34) 

                                ],[,0)(
~ 21 LLLLP  . (35) 

On the basis of (33), introduce a probability density 

function for all theoretically possible changes of reserves 

in the range  from ]0[ z,sv   to ][ 21
1 Ls,Lss vvv   

                             ).(
~

),(~
11 vvvv ssPss    (36) 

Here we say “theoretically possible”, because in the 

specified interval 1vs  might be negative, if 01  Lsv , 

and might exceed the energy storage capacity, if 

zLsv  2 . The function ~  is an auxiliary tool for 

defining the probability density function of transition 

from the reserves vs  to the reserves 1vs  on the 

segment ]0[ z, . At the ends of the segment this function 

takes the probability value. 

Using (25) and (36), the probability function of the 

transition from ]0[ z,sv   to ]0[1 z,sv   is determined by 

the following conditions: 

                 zsssss vvvvv   0если),,(~),( 11  ; (37) 

                0,),(),0( 1
0

1

 


vv

sL

v sLеслиdxsxs

v

 ; (38) 

                zsLеслиdxsxsz vv

sL

z

v

v

 


2,),(~),(
2

 . (39) 

Note that in case of (37) the value of function   is a 

probability density, whereas if (38) and (39) are realized, 

then the value of   is probability. The exceptions are 

theoretically possible situations 01  vsL  and 

zsL v 2 , when the values ),0( vs  and ),( vsz  are 

probability densities.  

For a given vs  from ]0[ z, , the probability density 

(the probability at the ends of the segment) of 1vs  from 

]0[ z,  is defined only by the function  . Therefore, for 

any positive 1s  from ]0[ z, , generated by the rule (25), 

the stock sequence ...2,1, vsv will be the Markov 

chain. Since   does not change at each iteration, this is 

the homogenous Markov chain. 

Further, we denote by )(sB  one of the probability 

density functions of the variable ]0[ z,s  with the 

properties: 

       ],0[,0)(],,0[,0)(,1)(
0

zssBzssBdssB
z

 .(40) 

The specific functions B  from this class will be 

denoted using indices and other symbols. 

Let vB  – be some probability density function of 

reserves at the iteration v . After the iteration v , the 

probability density function 1vB  will take the value  

           ],0[,)(),()1( 1

0

11 zsdssBsssB vv

z

vvvvv    . (41) 

We represent this transition from vB  to 1vB  as a 

mapping  : 

                                       )(1 BvBv  . (42) 

It is known that a homogenous Markov chain 

converges to stationary (or finite) states [6, 7] for any 

initial distribution of a random variable. 

3.1 Stationary state 

In our case, the existence of stationary state of the 

Markov sequence means that there exists the function B  

from class (40), such that  

                                    )(BB  . (43) 

Herein, it is important to make sure that the 

stationary state is unique. The homogenous Markov 

sequence may have several stationary states. Depending 

on which of these possible stationary states is used to 

create reserves, statistical tests might yield considerably 

different calculation results for the model of analysis of 

energy supply reliability [8]. 

3.2 The unique existence condition for 
stationary state 

Prove that if condition (32) is fulfilled, the stationary 

state of the random variable of reserves is unique.  

Since 2121 , QQRR  , then, according to (30), (31) 

21 LL  . Three cases are possible. 

Case 1. 

                                    021  LL  (44) 

If this inequality is satisfied, then, according to (8)-(10), 

the reserves will not be growing at any iteration. They 

will only decrease and in the stationary state will be at 

the same zero level. 

Case 2. If 

                                     210 LL  , (45) 

then, according to (8), (9), (11), the reserves will not 

decrease at any iteration, but will only grow. In the 

stationary state the level of reserves will take the value 

equal to z . 

Case 3, The most typical one during the model 

implementation  

                                    21 0 LL  . (46) 

In this case the stock level ]0[ z,sv   can decrease with a 

positive probability (if 0vs ) and increase (if zsv  ). 

The probability density remains positive at any point of 

the interval of possible decrease ]},,0[max{ 1
vv ssL   and 

at any point of the interval of possible increase 
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}],max{,[ 2
vv sLzs  . This fact follows from (32)-(39). 

Therefore, in a finite number of iterations we can get 

from any point ]0[ z,sv   to any point from the interval 

]0[ z,  with a positive probability density. This is 

sufficient for the homogenous Markov chain under study 

to have a unique stationary state [9]. Additionally, for 

this stationary state, the probability density of realization 

of the random variable of reserves s  from any point of 

]0[ z,  is positive: 

                               ],0[,0)( zssB  . (47) 

3.3 Experimental estimate of the required 
number of iterations 

In order to claim that the estimates obtained do not 

depend on the choice of the initial reserves, it is 

necessary to use a number of iterations that would derive 

a probability density close to a finite one. 

The calculations results presented here and below 

were carried out using a model for analyzing the fuel 

supply reliability of energy plantations in the remote 

settlements located in the coastal areas of Lake Baikal 

[10]. We considered a settlement with an average annual 

fuel demand of 8000 tons of coal equivalent (tce) of 

standard fuel, which corresponds to an approximate 

population of 6 000 people. We used the meteorological 

observations data for 100 winters from 1910 to 2010. 

Fig. 1 and 2 present two indicators of the 

homogeneous Markov sequence calculated on the model 

for analyzing the fuel supply reliability of energy 

plantations [4; 10]: the arithmetic mean value of the 

stock level and the standard deviation from the 

arithmetic mean value. Here we give three different 

random implementations of the process using different 

initial stock values. According to Fig. 1, after 6000 

iterations, the arithmetic mean values of the reserves 

diverge by no more than 2%. Standard deviations 

diverge by less than 2% after 4000 iterations. Based on 

these calculations, we can assume that 6 thousand 

iterations are enough for the iterative process of varying 

reserves to arrive to a state close to the stationary one for 

any initial level of reserves. The results of experimental 

calculations show that 65 thousand iterations are 

sufficient to obtain stable clear estimates of reliability 

indicators, the mathematical expectation of operational 

costs of the fuel supply system, and the mathematical 

expectation of damages caused by the shortage. 

 

Fig. 1. Dynamics of the arithmetic mean value for the three implementations of the randomly changing carryover 

reserves 

 

Fig 2. Dynamics of standard deviation from the mean arithmetic value for the three implementations of the randomly 

changing carryover reserves 
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In the example under study, the biggest deviation 

iQQ
i


1
was 1032 tce. The difference between the 

biggest and the smallest fuel production output 12 RR   

was 7986 tce. Therefore, condition (32) is satisfied 

4 Probability density function of 
reserves for stationary state 

Fig. 3 shows a histogram of the fuel long-term reserves 

distribution for one of the variants of calculations on the 

model of fuel supply reliability analysis. The maximum 

fuel stock capacity is equal to the storage capacity and is 

3811 tce. The entire reserves distribution interval is 

divided into 10 equal subintervals. The values on the 

abscissa axis correspond to the right boundaries of the 

subintervals. We can see from Fig. 3 that the increased 

probabilities of reserves are observed in the first and the 

last subintervals. The increased probability of reserves in 

the first subinterval is explained by the increased 

probability of zero reserves according to (38). The 

increased probability of reserves in the last subinterval is 

explained by the increased reserve probability in the 

storage capacity z (according to (39)). The central part 

of the histogram is fairly uniform and unimodal. 

Fig. 3. Histogram of distribution of long-term fuel 

reserves 

Calculations on the model show that with the same 

probabilities of energy demand and production, the 

probability distribution of different levels of long-term 

energy reserves may vary depending on the energy 

reserve and storage capacity.  

Conclusions 

We have developed models for analyzing and optimizing 

energy supply reliability for remote locations: a 

simulation model for the functioning of energy supply 

system; a model for analyzing the energy supply 

reliability for a given set of stock facilities based on 

multiple use of the functioning simulation model and the 

model for optimizing the energy supply reliability based 

on the variation of stock facilities. 

While analyzing and optimizing the energy supply 

reliability, we account for random factors in the 

production, consumption, and carryover reserves of 

energy resources. Realizations of random production and 

consumption variables in simulation of the functioning 

of the system are determined by the Monte Carlo 

method. 

It has been shown that the generated sequence of the 

carryover reserves of energy is a homogenous Markov 

chain. We have revealed the sufficient condition (32) for 

the unique stationarity of the random sequence of 

carryover reserves of energy. This condition can be 

verified using the input data of the model. Based on 

multiple experimental calculations, the number of 

iterations sufficient to obtain clear-cut results has been 

estimated. 

This work was performed within the frame of the 

Research Project III.17.4.4 of the Fundamental Research 

Program funded by Siberian Branch of Russian 

Academy of Sciences No. АААА-А17-117030310436-
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Foundation for Basic Research and Government of the 

Irkutsk region (Grant No. 17-410-380003). 
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