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Abstract. Fractional Order Internal Model Control (FO-IMC) is among the newest trends in extending 

fractional calculus to the integer order control. Approximation of the FO-IMC is one of the key problems. 

Apart from this, when dealing with time delay systems, the time delay needs also to be approximated. All 

these approximations can alter the closed loop performance of the controller. In this paper, FO-IMC 

controllers will be tested in terms of the approximation accuracy. The case study is a first order system with 

time delay. Several scenarios will be considered, aiming for a conclusion regarding the choice of the 

approximation method as a function of the process characteristics, closed loop performance and FO-IMC 

fractional order. To approximate the time delay, two extensively used techniques will be considered, such as 

the series and Pade approximations. These will be compared to a novel approximation technique. An 

analysis of the test cases presented show that the series approximation proves more suitable in a single 

scenario, whereas the novel approximation method produces better results for the rest of the test cases. 

1 Introduction 

Fractional calculus represents the generalization of the 

integration and differentiation to an arbitrary real or 

complex order. Among the first fractional order (FO) 

control algorithms are the CRONE controller [1] and the 

FO-PIλDμ controller [2]. The popularity of the latter has 

ever increased with numerous authors demonstrating the 
capability of such controllers to enhance the robustness 

and performance of the control systems [3, 4]. 

Researchers have also incorporated the ideas of fractional 

calculus in advanced control strategies [5], [6], [7], etc. 

The internal model control (IMC) paradigm has also 

benefitted from combinations with fractional calculus. 

Different strategies for designing FO-IMC controllers are 

presented in [8]-[14], where the design is based on 

inverting a FO model of the process or an integer order 

model and adding a FO filter. The tuning requires either a 

bandwidth specifications to be met, disturbance rejection 
and set-point tracking, etc. Very few experimental results 

are presented and most tuning rules are defined for 

single-input-single-output processes. A counter example 

is [15].   

Regardless of the tuning method chosen to design the 

FO-IMC controller, one major issue is concerned with the 

actual implementation of the equivalent controller, 

especially for time-delay systems. For integer order IMC 

controller, quite frequently the time-delay is 

approximated using Pade approximations or series 

approximations. For FO-IMC controllers, the time-delay 

approximation is complicated by the need to properly 

approximate also the FO terms. Various discrete-time 

approximation methods for FO systems exist, either as a 

direct or indirect approach. A comprehensive review of 

numerical tools for fractional calculus and FO controls is 

given in [16]. In [17], an efficient direct approximation 

method based on the impulse response is presented, 

where the impulse response is computed based on the 

frequency response of the FO system. The advantage of 

the technique is that it can be applied to any type of FO 

systems to determine its discrete-time approximation. 
In this paper, FO-IMC controllers will be tested in 

terms of the approximation accuracy. The considered 

case studies are various types of first order plus dead time 

(FOPDT) systems, the key difference between them 

consisting in the delay dominance. To approximate the 

time delay, two extensively used techniques will be 

considered, such as the series and Pade approximations. 

These will be compared to the novel approximation 

technique in [17]. The fractional order part of the FO-

IMC controller will be approximated in all cases using 

[17]. There is a single test scenario where the series 

approximation has higher suitability, whereas the 
approximation method developed in [17] produces better 

results for all the other test cases. 

The paper is structured as follows. Some brief notion 

regarding the FO-IMC controllers and their tuning is 

given in Section 2. Next, the approximation method used 

in this manuscript will be presented in Section 3. 
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Numerical examples are considered in Section 4, while 

the last section concludes the paper.  

2 Tuning of FO-IMC controllers for 

FOPDT processes 

A first order time delay system is described by the 

following transfer function:  

   H
P
( s )=

k

Ts+1
e-t s     (1) 

The closed loop scheme with the IMC controller is 
given in Figure 1, where HIMC(s) stands for the FO-IMC 

controller in (2), HP(s) is the process, Hm(s) is the 

process model, Hc(s) is the equivalent controller. 

 

Fig. 1. IMC closed loop control scheme 

In a series (first order) approximation of the time 

delay, with e
-t s @1-t s , where α is the fractional order, 

usually in the range (0;2) and λ is the IMC filter, the FO-

IMC and the equivalent controllers are given by: 
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In a Pade approximation of the time delay, with 

e-t s @
1-

t

2
s

1+
t

2
s

, the FO-IMC and the equivalent 

controller are determined as: 

  H
FO-IMC

( s )=
Ts+1

k

1+
t

2
s

lsa +1
   (4) 

 H
c
( s )=

Ts+1( ) 1+
t

2
s

æ

è
ç

ö

ø
÷

ks

1

lsa-1 +
t

2

   (5) 

For the novel approximation method in [17], the FO-

IMC and the equivalent controllers are determined as: 

  H
FO-IMC

( s )=
Ts+1

k

1

lsa +1
   (6) 

  𝐻𝑐(𝑠) =
𝑇𝑠+1

𝑘

1

𝜆𝑠𝛼+1−𝑒−𝜏𝑠
     (7) 

Notice that in this last case, the time delay has not 

been approximated and is used as such in the expression 

of the equivalent controller in (7).  

To tune the FO-IMC controller, regardless of the 
approximation used, the open loop system is firstly 

computed, H
ol
( s )= H

c
( s )H

p
( s ) , then, a certain phase 

margin PM and gain crossover frequency ωc are imposed 

in order to determine the two unknown parameters, the 

fractional order α and the filter time constant λ: 

  H
ol
( jw

c
) =1     (8) 

      

In [15], the tuning procedure for an FO-IMC 

controller, with a series approximation of the time delay, 

is given. The advantages of using a FO-IMC controller, 

instead of the classical integer order IMC are highlighted 

through numerical simulations and an experimental test. 

3 Efficient approximation method for 
fractional order systems 

The proposed discrete-time approximation method used 

in this paper has been developed and presented in [17]. 

The method is suitable for any non-rational transfer 

function and consists in four steps.  

Step 1: Discretize the FO Laplace operator using: 

  w( z-1 )=
1+d

T
s

1- z-1

1+dz-1
   (10) 

with δϵ[0÷1] and Ts-the sampling period. The 

parameter δ is a shaping knob and should be selected 

according to the system to be approximated [17]. This 

first step produces a discrete time FO system.  

 
Step 2: Calculate the frequency response of the 

discrete time FO system. To compute the frequency 

response, the Laplace operator s has to be replaced with 

jω, where w =
2p

T
s
N
s
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N
s
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û
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. Then, the 

frequency response of the discrete-time system is 

computed according to z-1 = e
-T
s
s . The parameter Ns is 

also a tuning knob. This second step produces a vector of 

frequency response values of the FO discrete time 

transfer function. 

 

Step 3: Calculate the impulse response of the discrete 

time FO system, based on the inverse Fast Fourier 
Transform (FFT) algorithm. This step results in a vector 

of Ns impulse response values: 

 

  

∠Hol( jωc )= −π + PM                    (9)

   g[ n ] = 1
Ns

G[ k ]e
+ j 2π
Nsnk

k=0

Ns−1

∑ , n = 0,1,2,...,Ns −1    (11)
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Step 4: Determine a rational discrete time transfer 

function having a similar impulse response as obtained 

from the inverse FFT. The order N of the approximation 

has to be specified. This step results in a rational discrete 

time transfer function: 

  G( z-1 )=
c

0
+ c

1
z-1 + ...+ c

N
z-N

d
0
+ d

1
z-1 + ...+ d

N
z-N

   (12) 

4 Numerical examples 

The first order time delay system in (1) is considered 
here, with k=1 and T=1, in three different scenarios, as 

indicated in Table 1. 

Table 1. Numerical examples 

Example λ τ λ/τ λ/T 

First 0.5 0.5 1 0.5 

Second 0.5 2 0.25 0.5 

Third 0.25 2 0.125 0.25 

In the first two examples, λ=0.5, equal to 50% the 

original process time constant, T, was used, but a 

different value for the time delay. There is considerable 
delay dominance for the second process (τ/T=2), 

compared to the first one (τ/T=0.5). A delay dominant 

process is also chosen in the third example, with τ/T=2, 

but the filter time constant is now half the one used in 

examples 1 and 2, with λ=0.25 and thus a lower ratio 

λ/τ=0.125. To show the effect of the time delay 

approximation method, as a function of the fractional 

order α and ratios λ/τ and λ/T, we consider the closed loop 

response to a unit step reference. The simulation results 

for example 1 are given in Fig. 2-4, for example 2 in Fig. 

5-7, while for example 3 in Fig. 8-10.  

Compare the results for the first and second examples. 

For the second example, the process exhibits a time delay 

τ=2, four times larger than in the first example, where 

τ=0.5.  In both examples, the Pade approximation offers 

the worst results. This is due to the lack of robustness of 

the Pade approximation, in cases where λ<0.8τ [18]. Also, 

notice that the Pade approximation leads to a larger 

overshoot, a higher settling time, a poorly damped closed 

loop response and a larger control effort with significant 

amplitude spikes. In the second example, where 0.8τ=1.6, 
thus with λ=0.5 significantly smaller than 0.8τ, the novel 

approximation method offers the best results, with the 

smallest overshoot and settling time and the smallest 

control effort. For the first example, with λ=0.5, slightly 

larger than 0.8τ=0.4, both the novel and the first order 

approximations produce comparable results, although for 

lower values of the fractional order α, the novel 

approximation method offers better results compared to 

the first order one. Notice also the tendency of the Pade 

approximation to go unstable for fractional orders with 

larger deviations from α=1. 
In the third example, the filter time constant has been 

chosen even smaller compared to the second example. In 

this case, the simulation results in Fig. 8-10 show that the 

novel approximation method is the best choice. The first 

order approximation can be considered as a suitable 

alternative for fractional orders α>1.8. 

In all cases, the novel approximation method has been 

considered for the approximation of the fractional order 

terms in the FO-IMC controller and the same order of 

magnitude for the controllers has been selected, N=5. The 

sampling period Ts=0.1 seconds has been considered in 

the discrete-time approximation of the equivalent 
controllers. Notice that in all cases presented, λ has been 

chosen smaller than the corresponding process time 

constant. This is due to the fact that a larger value for λ 

will result in a small closed loop bandwidth. Hence, the 

approximation error of the process time delay at high 

frequencies becomes of less importance because it occurs 

at frequencies, which are out of the passband. 
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b) b) b) 

Fig. 2. First example step response with 
α=0.8 a) output and b) input signals 

Fig. 3. First example step response with 
α=1.3 a) output and b) input signals 

Fig. 4. First example step response with 
α=1.8 a) output and b) input signals 

   
a) a) a) 

   
b) b) b) 

Fig. 5. Second example step response with 
α=0.8 a) output and b) input signals 

Fig. 6. Second example step response 
with α=1.3 a) output and b) input signals 

Fig. 7. Second example step response with 
α=1.8 a) output and b) input signals 
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b) b) b) 

Fig. 8. Third example step response with 
α=0.8 a) output and b) input signals 

Fig. 9. Third example step response with 
α=1.1 a) output and b) input signals 

Fig. 10. Third example step response with 
α=1.8 a) output and b) input signals 

   

Three numerical examples have been considered in 
this paper. The second and third examples are both delay 

dominant processes, with the ratio τ/T=2 and τ/ts=0.34, 

where ts is the process settling time. In this case, for 

processes with significant time delays, the novel 

approximation method is a better option compared to the 

first or the Pade approximation methods. For processes 

such as the first example (lag dominant), with τ/T=0.5 

and τ/ts=0.11, the first order and the novel approximation 

methods can be used for similar results.  

Extending the simulation results presented here, for 

processes with an even more prominent lag dominance 

(ratio τ/T>0.5, as used in the first example), the novel and 
first order approximation methods will produce even 

more similar results, regardless of the choice of the 

fractional order α and the FO-IMC filter time constant λ. 

For processes with a more prominent delay dominance 

(ratio τ/T>2, as used in the second and third examples), 

the novel approximation method will provide even better 

closed loop results than the first order approximation. It is 

also possible to improve the closed loop results by 

considering a higher order of the approximation. The 

Pade approximation method offers uninteresting results in 

approximating the time delay in a FO-IMC control loop, 
when used on processes with λ<0.8τ, as it has also been 

concluded in the integer order case [18]. 

5 Conclusions 

The FO-IMC controller has the advantage of 

increasing the robustness of the traditional IMC due to 

the supplementary tuning parameter involved, the 

fractional order. The key problem with FO-IMC 

controllers is represented by the approximation of the FO 

terms. Apart from this, the time delay needs also to be 

approximated. All these approximations can alter the 
closed loop performance of the controller. In this paper, 

FO-IMC controllers have been tested in terms of the 

approximation accuracy. The case study is a first order 

system with time delay. Scenarios such as lag or time 

delay dominance have been included. To approximate the 

FO terms in the FO-IMC controller, a novel 

approximation method has been used. Apart from these, 

the process time delay has been approximated using the 

series and Pade approximations. The only difference 

between the three FO-IMC implementation methods is 

the approximation of the process time delay. Hence, for a 
noticeable difference between the three approximation 

methods, a significant time delay was considered. The 

Pade approximation method led to poor closed loop 

response. The series and novel approximation methods 

led to similar results in the case of lag dominant 

processes, whereas for delay dominant ones, the novel 

method proved to be superior to the series approach. 
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