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Abstract. The applications of ionic liquids solve a lot of major problems regarding green energy 
production and environment. Ionic liquids are solvents used as alternative to unfriendly traditional and 
hazardous solvents which reduces the negative impact to environment to a great extent. This study produced 
models to predict two of the basic physical properties of binary ionic liquid and ketone mixtures: density 
and speed of sound.  The artificial neural network algorithm was used to predict these properties by varying 
the temperature, mole fraction, atom count in cation, methyl group count in cation, atom count in anion, 
hydrogen atom count in anion of ionic liquid and atom count in ketone.  Total experimental data points of 
2517 for density and 947 for speed of sound were used to train the algorithm and to test the network 
obtained.  The optimum neural network structure determined for density and speed of sound of binary ionic 
liquid and ketone mixtures were 7-9-9-1 and 7-7-4-1 respectively; overall average percentage error of 2.45% 
and 2.17% respectively; and mean absolute error of 28.21 kg/m3 and 33.91 m/s respectively. The said 
algorithm was found applicable for the prediction of density and speed of sound of binary ionic liquid and 
ketone mixtures. 

1 Introduction  
Ionic liquids (ILs) are classified as highly useful 
compounds having very good properties such as being 
non-volatile and non-flammable, low toxicity and good 
solubility for various organic and inorganic materials. 
Compared to regular volatile organic solvents, ILs have 
received considerable attention because they are more 
environmentally friendly. Applications of ILs solve a lot 
of major problems regarding green energy production and 
environment which includes solar energy, biomass and 
CO2 adsorption [1]. ILs have also been introduced as 
carbon dioxide capturing solvents as alternative to 
conventional amine-based solvents [2]. Publications 
about the preparation and application of ILs have grown 
and researches have gained considerable interest, 
therefore physical properties of ILs such as density, 
viscosity, conductivity, speed of sound, etc. are needed 
for these applications.  

ILs are considered as “designer solvents” and an 
alternative to hazardous organic solvents [3]. The use of 
these promising solvents as alternative to unfriendly 
traditional solvents reduces the negative impact on 
environment to a great extent. On the other hand, the 
toxic effects of ILs also have attracted great attention. In 
order to control their potential hazards and to design 
environmentally friendly ILs, knowing its physical 
properties is highly important. The numerous applications 
of ILs encourage the need to have thermodynamic models 
to compute the thermodynamic properties of ILs like the 

COSMO-RS which have been widely-used and 
considered an efficient tool in predicting properties of ILs 
[4].  Previous studies are only limited to certain number 
of systems of ionic liquids like binary mixtures of ILs 
with water and alcohol. Also, they only vary only one, 
two or three parameters like pressure, temperature and 
mole fraction while the effect of atom counts is 
disregarded. Other researches considered a certain 
temperature range but    limited   binary ILs only. 

Model building is needed for the properties of ILs to 
integrate wide range of composition and temperature as 
varying parameters. The existing data from experiments 
are reviewed to achieve accurate predictions of ILs. This 
research generates models that can predict physical 
properties of binary IL and ketone’s physical properties 
by incorporating the parameters that are produced from 
an algorithm. These properties are specifically density 
and speed of sound which are acquired from experimental 
data from different references. Optimization is done using 
the algorithm namely Artificial Neural Network (ANN).  

The output of this research is useful in reducing the 
cost in terms of utilizing ILs. Conducting experiments is 
highly costly because of the expensive materials and 
equipment. In this research, the physical properties are 
predicted instead of utilizing experiments which 
minimizes expenses and time. The huge number of 
experimental data can be represented by a model so that 
industries that use ILs will no longer handle experiments 
but will only refer to the models that have the ability to 
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predict properties. This makes the experimental data 
simpler and manageable. 

This study covers the prediction of binary IL and 
ketone   mixtures   only.  The   ketones    considered    are  
acetone,           acetophenone,          gamma-butyrolactone,   
N-methylpyrrolidone and 4-methyl-1,3-dioxolan-2-one. 
The ANN algorithm is used to predict the properties of 
ILs namely density and speed of sound. Density is an 
important property of ionic liquids which is essential in 
different applications like designing apparatuses, 
applying and solving material balance and design of 
separation processes and a crucial property in industrial 
process design involving ionic liquids. Speed of sound is 
also a significant property because it is needed to 
determine other physical properties and it is one of the 
key thermodynamic property of ILs due to its close 
relation with compressibility. The IUPAC Ionic Liquid 
Database, ILThermo is the database used in obtaining the 
experimental data of ILs. The parameters that are varied 
are temperature, mole fraction, atom count in cation, 
methyl group count in cation, atom count in anion, 
hydrogen atom count in anion of IL and atom count in 
ketone only. 

2 Methodology 

The step by step process flow chart for the prediction of 
density and speed of sound using the Artificial Neural 
Network algorithm is shown in Figure 1.  The first step 
was gathering all the available experimental data for 
binary IL and ketone mixtures from different references.  
Inconsistent data were then trimmed.     
 

 

    

Fig. 1. Conceptual framework. 

The acquired trimmed data were considered as the 
input data in evaluating the weights and bias or simply 
called as the parameters by applying the Artificial Neural 
Network algorithm.  Using the obtained values of the 
weights and bias, equations for computing the properties 
used by the algorithm were utilized to recalculate the 
values of the properties.  These new set of predicted data 
acquired after applying the model was then tested by 
getting the mean absolute error between the predicted and 
experimental values in order to identify which 
combination of the hidden layers produced the most 
accurate results.  The values of experimental and 
predicted properties were organized and then graphed 
according to the value of the percentage error. 

2.1 Data gathering   

Data gathering involved the searching for property data 
of binary IL and ketone mixtures from a database which 
is the IUPAC Ionic Liquids Database, ILThermo.  The 

codes of cations and anions used in this study is presented 
in Table 1. A total of 2565 for density and 947 
experimental data points for speed of sound were 
gathered. The temperature range, pressure, mole fraction 
range, number of data points and references for the 
respective ILs were also presented in the discussion.  
Also, information regarding atom count in cation, atom 
count in anion, methyl group count in cation, hydrogen 
atom count in anion of IL, and atom count in ketone were 
gathered, compiled and organized completely in a 
Microsoft Excel® file as part of data warehousing. 

Table 1. Cation and anion codes of ionic liquids. 

Cation Codes Anion Codes 
(C1) 1-ethyl-3-    
         methylimidazolium 

 (A1) Ethyl sulfate 

(C2) tetrabutylphosphonium   (A2) Bromide 
(C3) 1-hexyl-3- 
         methylimidazolium  
 

 (A3) Tetrafluoroborate 

(C4) phosphonium, tetraethyl-,  
 

 (A4) Trifluoromethane 
          Sulfonate 

(C5) 1-butyl-3- 
         methylimidazolium  

(A5) 1,1,2,2,2-pentafluoro-N- 
     [(pentafluoroethyl)sulfonyl] 
     Ethanesulfonamide  

(C6) Ethylammonium  (A6) bis[(trifluoromethyl) 
         sulfonyl]imide  

(C7) 1-methyl-3- 
         propylimidazolium  

(A7) Iodide  
 

(C8) Tetraphenylphosphorane  
 

(A8) Hexafluorophosphate  

(C9) Propylammonium  
 

(A9) Nitrate  

(C10) Triethylammonium  (A10) Formate  
(C11) Trimethylammonium  
 

(A11) Acetate  

(C12) Diethylammonium  
 

(A12) Dihydrogen phosphate  

(C13) Tetraethylammonium  
 

(A13) Hydrogen sulfate  

(C14) Tetrapropylammonium   
(C15) Tetrahexylammonium   
(C16) 1-butyl-1- 
           methylpyrrolidinium  

 

2.2 Data trimming   

Data trimming was the collating of all the data gathered 
by observing them very carefully, and then removing the 
points of disagreement.  Accurate and reliable data was 
considered.  Data trimming was done by graphing all the 
data gathered from different references.  Graphs of 
temperature versus property and mole fraction versus 
property were plotted that formed smooth curves.  Points 
that were observed to be far or out from the smooth curve 
were omitted or trimmed.  The trimmed data were 
compiled into one spread sheet in preparation for the 
utilization of the algorithm.  For density, the number of 
data points left after trimming was 2517 and 947 for 
speed of sound. 

References were classified into three different groups 
namely systems with more than two references, systems 
with two available references and systems with only one 

Data Gathering Data Trimming Apply Algorithm: 
ANN 
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Trimmed 

Data 

Weights and 
Bias Predicted 

Property 

    
 

, 0 (201Web of Conferences https://doi.org/10.1051/e3sconf/201919)
201

E3S 120
9

 100 2001003
CGEEE 

3

2



reference.  For systems with more than two references, 
the data that were consistent with one another were 
considered.  For systems with two available references, 
the most accurate data were selected in which the 
accuracy were based from the reported uncertainty.  
Lastly, systems with    only    one    available reference 
were automatically considered.  Additionally, systems 
that contain only two data points that belongs to this 
group were considered [5]. Data with large uncertainties 
were inconsistent data and expected to be out from the 
generated smooth curve. 

2.3 ANN algorithm   

The ANN model used in the   algorithm   is   presented in 
Figure 2.  This model includes input to a layer succeeded 
by hidden layers and the last layer called the output layer 
[6].  Each node in all layers were bridged through 
weights (wn-n’, wI’-n, and wn’-Y) and also the bias (wb-n, 
wb-n’, and wb-Y).  The source node is at first subscript 
while the destination node is at second subscript. 

 

Fig. 2. ANN model with two hidden layers. 

The setting of input layer allowed a total of seven 
input variables: temperature, T, mole fraction of the IL, X, 
atom count in cation, NC, CH3-R group count in cation, 
NM, atom count in anion, NA, hydrogen atom count in 
anion, NH of IL and atom count in ketone, NK.  The 
study was limited to a maximum of 2 hidden layers and 
10 nodes in each hidden layer. For the output layer, there 
was only one expected output per neural network 
structure which was the physical property.  Density and 
speed of sound for each binary IL and ketone mixture 
were treated separately.   

A flowchart for determining the neural network 
structure is presented in Figure 3. The neural network 
structure with the most accurate results for every physical 
property was determined by selecting the structure with 
lowest mean absolute error, MAE given in Eq. 1, where L 
is the total number of data points, Yl is the predicted 
value and El is the experimental or actual value.  

MAE= 1
L
∑ �Yl-El�L

l=1                             (1) 

The mathematical relationship among the inputs, 
hidden layers and outputs is described by weights, bias 
weights, and transfer functions [7]: 

𝑛𝑗 = f�∑ 𝐼′ × 𝑤𝐼−𝑛 + 1 × 𝑤𝑏−𝑛
J
j=1 �        (2) 

𝑛′𝑘 = f�∑ 𝑛𝑗 × 𝑤𝑛−𝑛′ + 1 × 𝑤𝑏−𝑛′K′
k=1 �     (3) 

𝑌𝑙′ = f�∑ 𝑛′𝑘 × 𝑤𝑛′−𝑌 + 1 × 𝑤𝑏−𝑌L′
l=1 �     (4)  

The transfer function is given by the following: 

 f1 = logsig = 1
1+e−𝑥

                         (5) 

 

Fig. 3. Flowchart for determining neural network structure. 

The I’ in Eq. 6 is a function of the input variables: T, 
X, NC, NM, NA, NH and NK and its corresponding slope, 
mi and intercept, bi and is expressed as: 

 I' = miI + bi                              (6) 

  

Fig. 4. Training process flowchart. 
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Initially, the training of ANN started by randomly 
assigning the initial values for weights and bias.  A 
flowchart for training the neural network is   shown   in 
Figure 4.  The weights and bias were adjusted until the 
termination criteria was achieved during the training 
period.  In this case, a value of 0.5 for all initial weights 
and bias were assigned.  The maximum number of epochs, 
training time and target mean square error, MSE (Eq. 7) 
were the three termination criteria.  

MSE = 1
𝐿
∑ (𝑌𝑙 − 𝐸𝑙)2𝐿
l=1                       (7) 

The experimental data were divided into two different 
subsets which were the training and testing.  Ninety 
percent (90%) of the experimental data were utilized in 
neural network training and remaining ten percent (10%) 
of data were allocated in testing the generated model. 
Parameters were obtained, and the optimum neural 
network structure were selected after the training process. 

2.4 Prediction of properties   

An MS Excel® spread sheet which simplified the 
computation for the chosen structure was prepared for the 
recalculation of the properties.  Eq. 9 was used to 
recalculate the data points for density and speed of sound. 
Yl is the predicted value and Yl

’  is the output node and is 
a function of weights, bias weights and the corresponding 
slope and intercept for the given set of data points (Eq. 4). 

Yl' = mlYl + bl                             (8)  

Yl = Yl
' -bl
ml

                                 (9) 

2.6 Computation of MAE and percentage error  

The last step was obtaining the mean absolute error for 
density and speed of sound using Eq. 1. For the goal of 
analyzing the results, percentage errors given in Eq. 10 
were also computed and the experimental and predicted 
values were grouped and graphed according to the 
percentage errors. Percentage errors of 0 – 1% were 
marked green, 1 – 5% were marked yellow while the 5% 
and above were marked red. 

Percentage Error = |𝐸𝑙−𝑌𝑙|
𝐸𝑙

× 100%         (10) 

3 Results and discussion 

3.1 Density  

A total of 2565 data points was collected for the density 
of binary IL and ketone mixtures from different reliable 
literatures. From that, 2517 trimmed data were utilized in 
training the network and obtaining the optimum 
parameters of the neural network. Adjustment of 
parameters was performed for different trial-and-error 
stage or epoch until the optimum neural network structure 
was achieved. The optimum neural network structure in 

the prediction of density of binary mixture of IL and 
ketones is called the 7-9-9-1 neural network structure. 
The neural network with nine (9) hidden layer 1 nodes 
and nine (9) hidden layer 2 nodes was the combination 
that reported the lowest mean absolute error of 28.21 
kg/m3 and overall average percentage error of 2.45%. 

Table 2. Density prediction of studied binary mixture of IL and 
acetone. 

IL Code 
Temp. 
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction 
Range 

Exp. 
Density 
Range 

(kg/m3) 

Ave. 
Percent 
Error 

Data 
Points Ref. 

C1A1 278.15-
308.15 101 0.0000-

1.0000 
773.58- 

1251 1.31 140 [8]  

C1A3 293.15-
308.15 101 0.1214-

0.9203 
918.15- 
1275.5 1.74 72 [9]  

C2A2 288.15-
313.15 101 0.0000-

0.0166 
766.8- 
819.6 1.23 102 [10]  

C5A3 298.15 101 0.0000-
0.0018 

784.6-
787.1 3.63 8 [11]  

C1A4 278.15-
318.15 101 0.0500-

0.9501 
844.2- 
1390.5 2.60 65 [12]  

C4A7 298 101.3 0.0000-
0.0008 

784.5- 
786.1 2.44 18 [13]  

C5A8 298.15 101.3 0.0000-
1.0000 

784.9- 
1367.9  3.54 15 [14]  

C3A8 298.15 101 0.0000-
1.0000 

784.4- 
1293.7 2.20 14 [15]  

C3A6 288.15-
298.15 101.3 0.0000-

1.0000 
784.3- 
1381.1 2.91 39 [16]  

C1A5 298.15-
313.15 101 0.0000-

1.0000 
766.9- 
1593.2 3.18 42 [17]  

    Total 1.96 515  

Table 3. Density prediction of studied binary mixture of IL and 
gamma-butyrolactone. 

IL Code 
Temp. 
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction 
Range 

Exp. 
Density 
Range 

(kg/m3) 

Ave. 
Percent 
Error 

Data 
Points Ref. 

C8A2 288.15-
313.15 101.3 0.0023-

0.0104 
1111.9-

1144 1.20 60 [18] 

C7A6 293.15-
323.15 100 0.0000-

1.0000 
1098.9- 
1479.3 1.32 84 [19] 

C5A6 293.15-
323.15 100 0.0000-

1.0000 
1098.9-
1439.3 0.66 112 [20] 

C16A6 293.15-
323.15 100 0.0000-

1.0000 
1098.9-

1399 0.50 126 [21] 

C6A9 293.15-
318.15 101 0.0000-

1.0000 
1096.7-
1210.2 1.47 108 [22] 

Total 0.98 490  

Table 4. Density prediction of studied binary mixture of IL and 
N-methylpyrrolidone. 

IL Code 
Temp. 
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction  
Range 

Exp. 
Density 
Range 

(kg/m3) 

Ave. 
Percent 
Error 

 No. 
of 

Data  
Ref. 

C9A10 293.15-
333.15 100 0.0952-

1.0000 
974.8-
1031.1 3.60 99 [23] 

C9A11 293.15-
333.15 100 0.1090-

1.0000 
964.6-
1028.3 4.88 99 [23] 

C10A13 298.15-
313.15 101 0.0000-

1.0000 
1014.7-
1142.9 1.28 60 [23] 
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IL Code 
Temp. 
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction  
Range 

Exp. 
Density 
Range 

(kg/m3) 

Ave. 
Percent 
Error 

 No. 
of 

Data  
Ref. 

C12A11 298.15-
313.15 101 0.0000-

1.0000 
1010.1-
1030.2 3.75 60 [24] 

C10A11 298.15-
313.15 101 0.0000-

1.0000 
1000.3-
1026.9 4.99 60 [24] 

C12A13 298.15-
313.15 101 0.0000-

1.0000 
1014.7-

1284 5.29 60 [24] 

C10A12 298.15-
313.15 101 0.0000-

1.0000 
1014.7-
1125.7 1.20 64 [25] 

C11A13 298.15-
313.15 101 0.0000-

1.0000 
1014.7-
1467.6 6.17 64 [25] 

C11A11 298.15-
313.15 101 0.0000-

1.0000 
1014.7-
1053.9 5.02 60 [25] 

C11A12 298.15-
313.15 101 0.0000-

1.0000 
1014.7-
1353.6 6.99 60 [25] 

C5A3 298.15-
333.15 101 0.0000-

1.0000 
997-

1200.6 2.43 105 [26-
28] 

C5A6 298.15-
323.15 100 0.0000-

1.0000 
1004.8-
1433.7 1.38 66 [29] 

C5A8 298.15-
313.15 101 0.0953-

0.8938 
1083.5-
1351.1 6.82 36 [25] 

C1A3 293.15-
308.15 101 0.1113-

0.9304 
1070.6-
1276.8 5.73 72 [30] 

C6A9 298.15 101 0.0000-
1.0000 

1028.3-
1210.8 2.14 20 [31] 

C1A6 293.15-
323.15 101 0.0978-

0.9002 
1115.9-
1502.2 1.24 63 [32] 

Total  3.89 1048  

Table 5. Density prediction of studied binary mixture of IL and 
4-methyl-1,3-dioxolan-2-one. 

IL 
Code 

Temp. 
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction 
Range 

Exp. 
Density 
Range 

(kg/m3) 

Ave. 
Percent 
Error 

Data 
Points Ref. 

C5A3 298.15 101 0.0000-
0.8497 

1199.6-
1206.5 1.30 15 [33- 

34] 

C1A1 278.15-
308.15 101 0.0000-

1.0000 
1188.9-

1251 2.25 133 [8] 

C13A3 283.15-
313.15 101 0.0000-

0.0826 
1177.8-

1215 0.75 62 [35] 

C5A6 293.15-
323.15 101 0.0146-

0.8980 
1183.3-
1432.8 0.73 98 [36] 

C14A2 298.15 101 0.0013-
0.0102 

1197.3-
1199.1 0.19 7 [37] 

C16A6 293.15-
318.15 101 0.0000-

1.0000 
1200.2-

1387 1.18 144 [37] 

C15A2 298.15 101 0.0097-
0.0550 

1193.1-
1198.1 1.30 5 [37] 

Total 1.32 464  

As shown in Tables 2 to 5, the average percentage 
error for the prediction of density of binary IL and ketone 
mixtures ranged from 1.23% to 3.63%, 0.50% to 1.47%, 
1.20% to 6.99% and 0.19% to 2.25% for binary ILs 
containing acetone,     acetophenone,   gamma-
butyrolactone     and    4-methyl-1,3-dioxolan-2-one 
respectively. The results acquired from prediction show 
that N-methylpyrrolidone + trimethylammonium 
dihydrogen phosphate (C11A12) with 60 data points 
resulted the highest percentage error. The possible 
sources of errors for the systems with a bit high 
percentage error could be from the inconsistency of 
experimental data that might occurred due to impurities 
of the substances and from inaccuracy of instruments and 
measurements methods. 

Tables 6, 7 and 8 show the values of the weights and 
bias that resulted from applying the ANN algorithm that 
are used in determining A, Bn’ and Cn of Eq. 11. The 
values are the result of modeling the density of binary IL 
and ketone mixtures which obtained the 7-9-9-1 as the 
optimum neural network structure and were utilized in 
predicting density. The generated model for this 
prediction as shown in Eq. 11 is a function of parameters 
A, Bn’ and Cn where mole fraction, X,  temperature, T, 
atom count in cation, NC, methyl group count in cation, 
NM, atom count in anion, NA, hydrogen atom count in 
the anion, NH and atom count in the ketone, NK values 
are inputted in Cn. 

Predicted Density =  1
0.0012

� 1
1+e−𝐴

� + 766.799   (11) 

Where: 

               𝐴 = ∑ �𝑊𝑏−𝑌 + 𝑊𝑛′−𝑌 �
1

1+e−𝐵𝑛′
��9

𝑛′=1  

             𝐵𝑛′ = ∑ �𝑊𝑏−𝑛′ + 𝑊𝑛−𝑛′ �
1

1+e−𝐶𝑛
��9

𝑛=1  

𝐶𝑛 = 𝑊𝑏−𝑛 + 0.0182𝑊𝑇−𝑛(𝑇 − 278.15) 

                        +𝑊𝑥−𝑛𝑋 + 0.0152𝑊𝑁𝐶−𝑛(𝑁𝐶 − 11) 

                        +0.0161𝑊𝑁𝑀−𝑛 + 0.05𝑊𝑁𝐴−𝑛(𝑁𝐴 − 1) 

                        +0.0161𝑊𝑁𝐻−𝑛𝑁𝐻 

                         +0.1667𝑊𝑁𝐾−𝑛(𝑁𝐾 − 10) 

 

Fig. 5. Density of binary IL and ketone mixtures. 
Predicted values by thes model versus experimental values: 
%error < 1 (Green); 1 ≤ %error ≤ 5 (Yellow); %error > 5 (Red). 

Figure 5 shows that the optimum neural network 
structure was able to predict the experimental values 
successfully for the density of binary and ketone mixtures.  
The predicted values were observed to have good 
agreement with experimental values.  Some of the error 
of prediction lied in the experimental uncertainties of data 
points.  From all the recalculated experimental density of 
this system, 34.92% were in between the percentage error   
range   of  0-1% which were marked green, 50.74% were 
in the range of 1-5% which were marked yellow and only 
14.34 % of the studied compounds have the percentage 
error higher than 5% which were marked red.  With such 
minimal number of data points with percentage error 
greater than 5%, the model obtained using the 7-9-9-1 
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structure was already acceptable for the prediction of density of binary IL and ketone mixtures. 
Table 6. Hidden layer 1 weights and bias. 

n wb-n wT-n wX-n wNC-n wNM-n wNA-n wNH-n wNK-n 
1 -0.1758 -0.5749 -0.1919 -0.1422 1.5232 -0.1299 0.5558 -0.4187 
2 -0.7970 -0.3672 -0.2888 0.1891 -0.4901 -0.1126 -0.4911 -0.1316 
3 -0.6827 -0.0926 4.9775 0.2008 -0.5951 -0.7771 -0.4150 5.6131 
4 4.1191 0.4785 -2.6178 6.2242 -2.8601 -3.1228 11.7474 -0.7126 
5 0.7235 -0.5036 7.3794 -1.1647 -1.5854 0.6500 -1.1372 7.0075 
6 -0.8060 -0.6615 0.3296 -0.3239 3.0801 0.0101 0.1983 -0.3027 
7 -2.7877 0.4201 1.9049 -2.4259 -5.1720 -0.5317 3.7196 0.6978 
8 -0.7899 -0.3609 1.5800 -2.3205 -2.1130 -2.2754 10.3176 0.5380 
9 -4.3872 0.7050 -3.8286 0.4812 -2.8008 0.6431 -0.9270 3.9505 

Table 7. Hidden layer 2 weights and bias. 

n' wb-n’ w1-n’ w2-n’ w3-n’ w4-n’ w5-n’ w6-n’ w7-n’ w8-n’ w9-n’ 
1’ -0.6568 -0.2366 -0.3948 0.5680 -1.0631 1.0366 -0.2419 -0.0288 -1.2717 -0.2266 
2’ -0.3633 0.0953 0.2219 -0.4847 0.5201 -0.9987 0.0900 -0.2120 0.4470 0.4504 
3’ -0.2613 -0.5905 0.0711 0.6762 -1.9827 0.7623 0.0337 -0.3381 -0.5887 -0.9828 
4’ 0.1062 -0.0106 -0.1498 -1.2979 1.5211 -2.5178 -0.3335 0.7707 0.7357 0.8750 
5’ -0.1991 -0.2184 -0.1846 0.6696 -1.6270 0.5756 0.3878 -0.6201 -0.7753 -0.6732 
6’ -0.6594 0.3852 -0.3986 0.1549 -1.3091 0.8048 0.2691 -0.6612 -0.0411 -0.2894 
7’ -0.7074 0.1990 -0.3667 -0.0475 -0.2679 -0.2821 -0.3917 0.2404 0.0454 -0.2681 
8’ -0.0848 -1.0879 0.0418 -1.6752 2.0314 -2.0672 -1.0718 1.9989 1.8753 1.7967 
9’ 0.0338 -0.3481 -0.2178 -0.7598 0.4263 -0.4517 -0.4303 -0.2501 0.4338 0.6150 

Table 8. Output layer weights and bias. 

wb-Y w1’-Y w2’-Y w3’-Y w4’-Y w5’-Y w6’-Y w7’-Y w8’-Y w9’-Y 
0.0382 1.2361 -0.9824 1.7933 -3.1517 1.5534 1.0979 -0.0532 -3.7370 -0.8666 

3.2 Speed of sound  

There were 947 data points collected for the speed of 
sound of binary IL and ketone mixtures which were 
obtained from various reliable literatures. Since all the 
systems have only one reference, all the collected data 
were used in training the network and obtaining the 
optimum parameters of the neural network. Just like in 
the prediction of density, adjustment of parameters was 
performed for different trial-and-error stage or epoch 
until the optimum neural network structure was achieved. 
The optimum neural network structure in predicting the 
speed of sound of binary IL and ketone mixtures is the 7-
7-4-1 neural network structure. The structure with seven 
(7) hidden layer 1 nodes and four (4) hidden layer 2 
nodes achieved the smallest mean absolute error of 33.91 
m/s  and 2.17% overall average percentage error. 

Table 9. Speed of sound prediction of studied binary mixture of 
IL and acetone. 

IL 
CODE 

Temp. 
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction 
Range 

Exp. 
Speed of 
Sound 
Range 
(m/s) 

Ave. 
Percent 
Error 

Data 
Points 

Ref. 

C1A3 293.15-
308.15 101 0.1214-

0.9203 
1172.8-
1614.6 1.96 72 [7] 

C1A4 278.15-
318.15 101 0.0500-

0.9489 
 1109.3-
1475.9 1.70 65 [10] 

C3A6 288.15-
298.15 101.3 0.0000-

1.0000 
1161.6-
1250.5 0.79 39 [14] 

C2A2 298.15 101 0.0006-
0.0166 

1161.12-
1178.7 1.08 13 [8] 

   Total  1.57 189  

Table 10. Speed of sound prediction of studied binary mixture 
of IL and N-methylpyrrolidone. 

 
 

Temp.  
Range 

(K) 

Pressure 
(kPa) 

Mole 
Fraction  
Range 

Exp. 
Speed of 
Sound 
(m/s) 

Ave. 
Percent 
Error 

Data 
Points Ref. 

C12A11 298.15-
313.15 101 0.0000-

1.0000 
1454-
1617 2.64 60 [22] 

C9A10 293.15-
333.15 100 0.0952-

1.0000 
1420.3-

1566 1.64 99 [21] 

C1A3 293.15-
308.15 101 0.1113-

0.9304 
1520.3-
1621.3 0.63 72 [28] 

C11A13 298.15-
313.15 101 0.0000-

1.0000 
1520-
1591 3.48 64 [23] 

C10A12 298.15-
313.15 101 0.0000-

1.0000 
1520-
1836 2.34 64 [23] 

C9A11 293.15-
333.15 100 0.1090-

1.0000 
1391.1-
1558.1 0.59 99 [21] 

C10A11 298.15-
313.15 101 0.0000-

1.0000 
1520-
1840 2.24 60 [22] 

C12A13 298.15-
313.15 101 0.0000-

1.0000 
1356-
1572 3.34 60 [22] 

C10A13 298.15-
313.15 101 0.0000-

1.0000 
1520-
1894 3.66 60 [22] 

C11A11 298.15-
313.15 101 0.0000-

1.0000 
1490-
1586 2.73 60 [23] 

C11A12 298.15-
313.15 101 0.0000-

1.0000 
1520-
1708 4.01 60 [23] 

Total 2.32 758  
 
The percentage error for the prediction of the speed of 

sound of binary IL and ketone mixtures ranged from 0.79% 
to 1.96% and 0.59% to 4.01% for ILs containing acetone 
and N-methylpyrrolidone respectively, as presented in 
Tables 9 and 10. The results acquired from prediction 
show that N-methylpyrrolidone +  
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Table 11. Hidden layer 1 weights and bias. 

n wb-n wT-n wX-n wNC-n wNM-n wNA-n wNH-n wNK-n 
1 0.3946 0.6883 2.0038 -4.8584 0.1144 -4.0348 -0.5635 4.7758 
2 0.8904 -2.0383 -0.6031 2.0653 1.3870 -0.3993 -0.0254 1.6676 
3 -2.4562 1.8953 2.1869 -4.0276 -5.1550 2.4945 -2.0634 -1.1748 
4 0.2491 0.2349 1.1831 -3.7918 0.3209 -2.3343 -0.5430 3.9458 
5 1.5601 -0.5615 -2.1579 -12.3581 -0.5566 -1.9587 2.8208 4.1721 
6 -0.6752 -1.1269 0.2481 1.2642 0.7233 -0.2572 -0.2764 -0.2656 
7 -0.8933 2.8635 -3.7984 2.1791 -0.2367 -1.6760 0.4127 -1.3612 

Table 12. Hidden layer 2 weights and bias. 

n' wb-n’ w1-n’ w2-n’ w3-n’ w4-n’ w5-n’ w6-n’ w7-n’ 
1’ 1.3502 -2.2289 -0.4700 2.5172 -1.3798 3.9218 0.0744 0.9831 
2’ 0.0448 -1.9471 -0.3800 0.6523 -1.1998 0.9135 0.2236 1.6648 
3’ -0.2964 -0.9532 -0.6120 -0.0231 -0.6493 0.7089 0.2225 0.2593 
4’ 0.3143 0.8527 0.2445 -0.5045 0.3972 -0.2384 0.3080 -0.4534 

Table 13. Output layer weights and bias. 

wb-Y w1’-Y w2’-Y w3’-Y w4’-Y 
2.8065 -4.2321 -2.7572 -0.9407 1.7635 

 
trimethylammonium dihydrogen phosphate (C11A12) 
with 60 data points resulted the highest percentage error.  

Tables 11, 12 and 13 show the values of weights and 
bias that resulted from applying the ANN algorithm that 
are used in determining A, Bn’ and Cn of Eq. 12 to 
predict the speed of sound.  The generated model for 
the prediction of this system given in Eq. 12 is a 
function of parameters A, Bn’ and Cn where T, X, NC, 
NM, NA, NH and NK values were inputted in Cn.  

Predicted Speed =  1
0.0013

� 1
1+e−𝐴

� + 1109.3   (12) 
                   of Sound 

Where: 

 𝐴 = ∑ �𝑊𝑏−𝑌 + 𝑊𝑛′−𝑌 �
1

1+e−𝐵𝑛′
��4

𝑛′=1  

 𝐵𝑛′ = ∑ �𝑊𝑏−𝑛′ + 𝑊𝑛−𝑛′ �
1

1+e−𝐶𝑛
��7

𝑛=1  

 𝐶𝑛 = 𝑊𝑏−𝑛 + 0.0182𝑊𝑇−𝑛(𝑇 − 278.15) 

      +𝑊𝑥−𝑛𝑋 + 0.0256𝑊𝑁𝐶−𝑛(𝑁𝐶 − 14) 

      +0.0164𝑊𝑁𝑀−𝑛(𝑁𝑀 − 1) + 0.0714𝑊𝑁𝐴−𝑛(𝑁𝐴 − 1)                 

      +0.0161𝑊𝑁𝐻−𝑛𝑁𝐻 + 0.1667𝑊𝑁𝐾−𝑛(𝑁𝐾 − 10)                      

Figure 6. shows that the optimum neural network 
structure was able to predict the experimental values 
successfully.  The predicted values of speed of sound of 
binary IL and ketone mixtures were observed to have 
good agreement with experimental values.  Most of the 
error of prediction lied in the experimental uncertainties 
of data points. From all the recalculated experimental 
speed of sound    of    this  system,  35.06% were    in    
between the  percentage error range of 0-1% which 
were marked green, 53.01% were in the range of 1-5% 
which were marked yellow and only 11.93% were 
greater than 5% which were marked red.  With such 
minimal percentage error greater than 5%, the model 

obtained using the 7-7-4-1 structure was already 
acceptable for the prediction of speed of sound of 
binary IL and ketone mixtures. 

 

Fig. 6. Speed of sound of binary IL and ketone mixtures. 
Predicted values by the model versus experimental values: 
%error < 1 (Green); 1 ≤ %error ≤ 5 (Yellow); %error > 5 
(Red). 

4 Conclusion 
New models using an algorithm, the artificial neural 
network, were designed to predict the density and speed 
of sound of binary ionic liquid and ketone mixtures 
which have numerous applications because of its 
environmentally benign nature. The prediction was 
based on the knowledge of temperature, mole fraction, 
atom count in cation, methyl group count in cation, 
atom count in anion, hydrogen atom count in anion of 
IL and atom count in ketone for the compounds in the 
mixture.  Density and speed of sound from IUPAC 
Ionic Liquids Database, ILThermo, were considered as 
the experimental database.  If no experimental data is 
available, the proposed models are potential tools to 
estimate the density and speed of sound of binary ionic 
liquid and ketone mixtures. 
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In this study, the network has a maximum of seven 
inputs and one output. The optimum neural network 
structure acquired for the density of binary ionic liquid 
and ketone mixtures was the 7-9-9-1 model with an 
overall average percentage error of 2.45% and mean 
absolute error of 28.21 kg/m3. For the speed of sound of 
binary ionic liquid and ketone mixtures, the model with 
7-7-4-1 neural network structure was found to be the 
optimum model which produced 2.17% overall average 
percentage error with 33.91 m/s mean absolute error. 
The results for the density and the speed of sound of 
binary ionic liquid and ketone mixtures showed that the 
experimental and the ANN predicted data were in good 
agreement. Therefore, the identified models are 
applicable for the prediction of density and speed of 
sound of binary IL and ketone mixtures. 
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