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Abstract. In the article, aerodynamic resistance of the stope face is 
studied in case of selective mining the coal seam. To carry out the 
research, the methodology of the computational experiment for evaluating 
the longwall face aerodynamic resistance influence on the efficiency of 
airing the stope face has been substantiated. The model of the stope face 
section, equipped with mining and backfilling mechanized complex based 
on the serial 1KD90 roof support has been developed in the 3D modeling 
software SolidWorks. The diagrams of the air stream velocity distribution, 
when it flows in the cross section of the longwall face working space with 
different positions of stoping equipment and the values of rock-cutting 
thickness of the seam bottom (rock ledge) have been obtained in the 
environment of computational module FlowSimulation. The pressure drop 
along the length of the aerodynamic model of the stope face section has 
been assessed. The dependences of the average velocity of the air stream 
flow on the value of rock-cutting thickness have been obtained. The 
obtained results can be used to improve and modernize the elements of 
mining and backfilling mechanized complex of machinery and equipment, 
as well as the technology for selective mining of thin and very thin coal 
seams in the Western Donbas. 

1 Introduction 
Studying aerodynamic parameters of mine workings is one of the key tasks in the process of 
mine ventilation design. Rational aerodynamic longwall parameters make it possible not only 
to provide a stope with the sufficient air volume but also to improve considerably ventilation 
stability of that stope [1, 2]. A number of theoretical papers (by such scientists as A.A. 
Skochinskogo, S.A. Chaplygina, N.Ye. Zhukovskogo, K.F. Prospury, K.K. Fedyaevskogo, 
A.Ya. Milovicha, and others) deal with both theoretical and experimental studies of body flow. 
In most cases, the researchers analyzed ventilation stability in terms of general aerodynamic 
mine working resistance determined either analytically or experimentally [1 – 6]. 

Nowadays, such studies are little if any. At some mining enterprises, aerodynamic 
resistance is determined experimentally. As a rule, resistance of mine workings is 
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calculated basing upon the reference data.  
Mining aerology [7 – 10] highlights three types of aerodynamic resistance – friction 

resistance, local resistance, and front resistance. General aerodynamic resistance of a 
ventilation network is calculated using following formula:  

++= f.rslocfrt RRRR , H·c2/m8,   (1) 

where  frR ,  locR ,  f.rsR  are total friction, local, and front resistances  respectively.  
Friction aerodynamic resistance is determined according to expression: 

3S
PLR fr α= , H·c2/m8,    (2) 

where α  is coefficient of friction aerodynamic resistance, H·c2/m8; P  is longwall 
perimeter, м; L  is longwall length, м; S  is cross-section area of a mine working, m2. 

Friction force is stipulated by the air viscosity. It is observed between the air layer and 
surface of a mine working, equipment and other bodies. In most cases, it acts within the 
boundaries of flows as well as between them at the moment of flow friction on the surface 
of structural elements of the support; that results in nonuniform distribution of the velocity 
of air flow and its deceleration with the formation of boundary layer. According to the 
literature sources, friction force is 50 – 75% of general resistance of a mine ventilation 
network; front resistance is 10 – 20%; and local resistance is 15 – 30% [11 – 15]. 

Changes in the geometry of internal flow boundaries result in local resistances having 
considerable effect upon the air flow velocity or longwall direction. In general, they occur 
in mine workings in case of distortion of the flow section (by sudden widening or 
narrowing of a mine working; turning, division, or merging of flows etc.).  

Value of local aerodynamic resistance is found using following expression: 

22S
Rloc

ρξ= , H·c2/m8,          (3) 

where ξ  is coefficient of local resistance (dimensionless value); ρ  is air density, kg/m3; 
S  is cross-section area of a mine working, m2. 

Front resistance is the resistance to the flow by a body being within that flow. Front 
resistance of a body being in a mine working is still understudied. When it comes to 
practice, one should take into account flow-around in terms of different obstacles, i.e. 
armour elements, props, mine equipment (belt conveyors of various types, electric 
locomotives, mine cars) – all those factors make up specificity of the consideration of air 
flow along mine workings. Normally, coefficient of front resistance depends upon the 
geometry of an object and roughness of its surfaces. 

Front resistance force of an object is determined according to formula [16 – 20]: 

2
bxrs.f vSСR

2
ρ= , Н,    (4) 

where xС  is dimensionless coefficient of front resistance depending upon Reynolds 
number and geometry of an object; bS  is area of object projection to the mine working 
cross section, m2; v  is velocity of the oncoming air flow, m/s. 

To study front resistance force of a support in a stope, it is required to integrate 
distribution of pressures along the mine working cross-section for further determination of 
the force applied within the point, i.e. to evaluate oncoming effect of the environment for a 
motionless body. In that case, resistance of a stream-lined body may be determined by 
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friction resistance and front resistance (form resistance). Friction resistance will depend 
upon shear stresses occurring between the air layers as well as upon the roughness of the 
support surface. Form resistance is demonstrated by means of considerable vortex 
formation being the result of the impact of a moving flow with the motionless objects as 
well as after flow separation from the surface of a body which that air flows around. 

Main objective of the study is to develop a methodology for evaluating aerodynamic 
resistance of a longwall as for the efficiency of stope ventilation.  

2 Numerical modeling approach 
Evaluation of the parameters for mine working support and determination of their rational 
geometry, in terms of which value of aerodynamic resistance will be minimal, is a topical 
problem.  

That problem may be solved by modeling in CAD systems. Currently, there are 
numerous programs to study that task [21 – 24]. A methodology consisting of three stages 
is proposed to be used for the research: 

1. Development of 3D-model taking into consideration real geometrical parameters of a 
production unit (Fig. 1 represents its general view).  

Consider a case of selective mining of thin seams involving coal-cutting with a floor 
layer based upon the application of MKD-90 complex with a stowage conveyer. 

Stage one involves construction of sketch design for all the site elements; then, it is used 
as the base for developing 3D surfaces in SolidWorks software package.  

In the case of selective mining of thin seams when coal-cutting with bottom rocks, 
which is based on the using of the complex MKD-90 in the version with a filling conveyor. 

At the first stage, it is making sketch design of all elements of the site, and then on its 
basis, 3D surfaces are created in the SolidWorks software suite. 

 
a 

 
b 

 
Fig. 1. General view of a longwall: a – geometrical parameters of a powered complex; b – 3D-model 
of a powered complex. 
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Further, it is required to set volume and boundaries of the modeling area as well as 
boundary calculation conditions (aerodynamic parameters, air consumption to ventilate 
mine workings, total pressure of the environment, spacing of support spacing, surface 
roughness etc.) in the FlowSimulation module as it is shown on Fig. 2.  

 
a 

 
b 

 
Fig. 2. Setting modeling area for powered support (a) and specifying boundary conditions (b). 

 
2. Determining purposes of the study as well as parameters and areas of a network (its 

curvature angle and minimal dimension of the element should be selected basing upon the 
specified research objective), i.e. evaluating fields of velocities and pressure difference of 
the air flow within the complex-geometry sites of a production unit. 

While modeling, following is being used to describe air motion along the mine 
workings [25 – 28]: 

– differential equation of the flow continuity: 
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– Navier-Stokes system of equations: 
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a 

 

 
b 

 
Fig. 3. Evaluating pressure difference along the length of a hydrodynamic model. 
 

a 

 

 
b 

 
Fig. 4. Evaluating average velocity of the flow in terms of flow motion through a powered support. 

 , 0 (2019)E3S Web of Conferences https://doi.org/10.1051/e3sconf /201912301048123
Ukrainian School of Mining Engineering - 2019

1048 

5



a 

 

 
b 

 

 
Fig. 5. Distribution of the air motion velocity along the longwall cross-section: а – with a shearer; b – 
with props of a powered. 
 

According to the Safety Rules [6, 8, 15], velocity of air motion in a stope is limited: 
=minV 0.25 m/s; =maxV 4 m/s.  

3. Analysis of the results as for distribution of air flow velocity  and pressure difference 
fields being evaluated according to the cross section of the modeled production unit (Figs. 3 
and 4). 

3 Expirement results 
The considered physical pattern of the flow streamlining demonstrates that increase in the 
seam thickness results in the lengthening of props of all the rows. Since the value of front 
resistance depends upon geometrical parameters of the support, then, in this case, it will 
grow. Front resistance depends upon stands, jacks, caps, constituents and props of the 
support etc. Similarly, decrease in seam thickness results in the fact that the degree of cross-
section filling increases causing the increase in overall aerodynamic resistance by means of 
reduced inside cross-section.  

Fig. 6 shows that air flow is characterized by nonuniform distribution. Vortexual flows 
are formed between the props while areas at the periphery demonstrate the formation of 
stagnation zones with low velocity (about 0.5 m/s). Nonlinearity, formed by the props, 
causes vortexual motion; that results in additional energy losses of the main fan. Moreover, 
deformed flow effects considerably the average velocity of air motion in the longwall. 
 

 

0 1.5 3 4.5 6

1
2

3

4
5

Ro
ta

tio
na

lit
y,

 1
/s 

Length, m  
Fig. 6. Graphs of the evaluation of air flow vorticity across the longwall width. 
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The paper has analyzed the effect of coal-cutting height upon the average velocity in the 
longwall (Fig. 7). 
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Fig. 7. Dependence of average velocity upon the coal-cutting height. 
 

Analysis of the obtained results has demonstrated that velocity in the longwall reduces 
in terms of quadratic dependence along with the increasing coal-cutting height.  

454.1256.00364.0 2 +⋅−⋅= ccav hhv .   (5) 

4 Conclusions 
The obtained results make it possible to modernize structural components of a powered 
support taking into consideration aerodynamic resistance; besides, that allows elaborating 
recommendations as for provision of the face area with fresh air taking into account the 
coal-cutting height. Innovative engineering solutions involving changes in geometrical 
parameters of mine sections should be elaborated by considering areas of mine working 
cross-sections. Detecting areas of accumulation of hazardous substances (dust, gas) at the 
design stage will help reduce risks of accidents by means of more efficient selection of 
ventilation schemes for mine workings and create more comfortable working conditions for 
miners. Further studies will be aimed at improving methodological basics of modeling and 
optimizing calculations taking into consideration specific features of the production units.  

The research is carried out within the framework of scientific topics “Resource-saving geotechnical 
and hydrodynamic parametrization of the extraction of low-capacity mineral raw materials in an 
technogenically loaded environment”, financed by the state budget of Ukraine (State registration 
No. 0117U006753). 
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