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Abstract. A 3D model of optimal contours phased development of oval-
shaped open pit mines is proposed in the article. It is assumed that with 
enough accuracy the volumetric contour of the open pit mine is 
interpolated by an elongated elliptic hyperboloid. The calculation formulas 
for mineral resources are derived and optimal volumes of overburden are 
determined depending on the mining phase. In this case, the total number 
of mining phases is set in advance. The stripping ratio is used as a quality 
criterion of the optimization task. The problem of optimal control is solved 
using the Bellman function in dynamic programming. All the necessary 
calculation formulas are obtained in the final form by solving the 
optimization problem. Their simplicity and substantiation of each 
conclusion ensure that the results of this study can be successfully applied 
in practical calculations of the design and planning of mining operations in 
open pit mining. 

1 Introduction 

One of the constraints of implementing innovative technologies in open pit mining is the 
lack of a methodology for their implementation in design practice. We considered the case 
of round-shaped mineral occurrences when creating a 3D model for the phased 
development of the open pit contours [1 – 3]. The open pit mine turned out to have a form 
of a truncated cone, which is characteristic mainly in mining of kimberlite deposits. It was 
possible to solve this problem on digital models of open pit mines using phased contours of 
an open pit mine along the horizontal sections of a one-dimensional spline of the second 
order, and a two-dimensional spline in depicting the lateral surfaces of the ore body in 3D 
modelling. The inclination of the open pit edges by mining phases of steeply dipping open 
pit mines has been taken into account by establishing an optimal radius of the contours of 
the lateral surfaces on each of them while optimizing the volumes of overburden and ore, as 
well as the step-by-step determination of the stripping ratio. However, practice shows that 
most of the open pit mines are oval. 

Modern design of production at a mining enterprise, planning and allocation of 
resources are based on mathematical programming models. In practice, the optimal solution 
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cannot be achieved without considering all possible combinations and permutations of the 
extraction sequence. Methods of studying operations have limited application in large-scale 
open pit mining operations, as the number of variables becomes too large. A scientific work 
[4], in which a hybrid basis for simulation of the problem of open pit mining planning has 
been developed and tested, was of great interest in solving this project's tasks. The article 
investigates the dynamics of the geometry (form) of open pit mining and the subsequent 
movement of the material in the form of a continuous system described by time-dependent 
differential equations. 

The continuous compact action simulator is implemented in the MATLAB using a 
modified elliptical section to model the development of the geometry of open pit mining in 
time and space. Discrete simulator of open pit mining DOPS simulates the periodic 
expansion (development) of the front (open pit field) of open pit mining. The functional 
approximation of the discrete modeling of the open pit edges represents  means of 
converting a set of partial differential equations (PDE), taking into account the dynamics of 
open pit mine formation, to the system of ordinary differential equations (ODE). Numerical 
integration using the Runge-Kutta scheme gives the trajectory (path of development) of the 
geometry (form) of the open pit field over time with the appropriate material volume and 
the net present value NPV of the extraction operation. An example of a study of an iron ore 
mine with 114 000 blocks was conducted to verify and validate the model. The optimum pit 
boundaries were obtained using the Lerchs-Grossman algorithm. The best option of the 
annual schedule, generated by the bundle node in Whittle Four-X yielded, brought a net 
present value of NPV of $ 449 million for 21 years of mine operation at a discount rate of 
10% per annum. Authors of the article believe that the model of hybrid modeling is the 
basis for future studies in an interactive mode based on targeted intellectual activity. 

A standard approach of designing open pit mining operations, as a rule, implements the 
process of open pit mine optimization, following the main planning mode within a certain 
final contour of the mine. As a result, the mine operates at a higher stripping ratio during 
the initial period and moves towards a lower ratio to the end of the operation term of the 
mine. The consequence of this is the annual production schedule, which does not contribute 
to maximizing the net present value (NPV). In this case, while selecting schemes, the 
Pushback approach [5] becomes practical and can increase the NPV of the project. The 
Pushback method minimizes the stripping ratio in the early years and delays acquiring some 
equipment until late in the operation term of the mine. The results of the research show that 
the project NPV can be increased by using the Pushbacks by delaying and leveling the costs 
of equipment and overburden excavation, with the maximum quality improvement required 
by the processing plant.  

Approaches to solving the problem of operational planning of open pit mining 
operations with the dynamic distribution of technological vehicles, as described in a 
scientific work [6], will be useful when describing the dynamics of the relocation of the 
working zone along steep open pit edges. A hybrid algorithm, developed and tested in real 
conditions, combines the characteristics of two metaheuristics: Randomized Adaptive 
Search Procedures and General Variable Neighborhood Search. 

The described models allow determining some of the desired parameters of the open pit 
mine during the technical-economic justification phase in the first approximation. Specially 
developed engineering methods of calculation are applied for open pit fields of elongated 
form, which have found practical application in practice of open pit design [7 – 12]. 

The use of optimization for planning and determining the best alternatives to data 
processing opens great opportunities for potential increase in value as shown in a work 
[13]. However, the main result is that the use of only initial and final conditions and fixed 
boundary values can lead to modes that are impractical when taking into account the actual 
limitations of the mining system. Therefore, it is important to include the considerations 
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proposed in the planning process. 
The scientific work [14] presents an integer programming (IP) model that generates 

open pit projects in accordance with the requirements of the ore reserve, as an extension of 
the classical optimization models for planning of mining. A set of new binary variables is 
introduced for this purpose, representing blocks that can be taken as an open ore reserve, in 
addition to mining and processing decisions. The model was encoded and tested in a set of 
standard copies, which indicates very encouraging results in the creation of schedules 
(modes) of mining blocks. 

The open pit mine production scheduling problem is proposed to be solved using a new 
metaheuristic technique known as local branching in the study [15]. Authors combine local 
branching with a new adaptive branching scheme to speed up the search process and 
develop heuristics to create an initial feasible solution quickly. Although the minimum 
requirements are rarely considered in the literature, this method provides almost optimal 
solutions for a series of conceptually generated data sets. 

Testing of the developed technology for safe intensive development of working zones 
along steep open pit edges on the digital model of the Lomonosov iron ore mine showed 
that there are reserves for minimizing stripping volumes in the phased mining of steeply 
dipping mineral occurrences without the formation of temporarily non-operating open pit 
edges [16, 17]. A methodology was developed to optimize the phased volumes of 
overburden and ore on the 3D model of an oval-shaped open pit mine in order to improve 
the design quality of this technology. 

2 Material and methods 
2.1 Characteristics of oval shaped mineral occurrence 

We should consider the case when the mineral occurrence has an oval shape. We assume 
that the boundary of this region is depicted by an elongated elliptic hyperboloid. The 
elongated axis of the ellipsoid is depicted as a longitudinal, and perpendicular to it, axis of 
the elliptical hyperboloid will be the transverse axis. The horizontal cross section of 
hyperboloid is ellipse, the largest axis of which coincides with longitudinal direction 
(Ox axis), the smallest axis of hyperboloid coincides with transverse direction of ore shoot 
(Oy axis). The origin is located in the center of uppermost ellipse, Oz axis passes through it 
vertically downwards (Fig. 1). After fulfillment of necessary preliminary conditions, 
volumetric surface of ore shoot would be described by the following equation: 

2 2 2

2 2 2 1.x y z
a b c

+ = +      (1) 

On uppermost boundary of ore shoot z = 0. Horizontal cross section of this surface 
with plane z = 0 is described by following expression: 

2 2

2 2 1.x y
a b

+ =             (2) 

It is assumed that this cross section is n extended ellipse, largest axis of which is 
located on Ox axis, with a b  (Fig. 2). The area of the figure would be determined by 
limiting line (2). We should switch to polar coordinates: 

cosx ar ϕ= , sin .y br ϕ=           (3) 

We obtain an equation of ellipse in polar coordinates system (3) by putting into 
equation (2). It is written in the form r = 1. 
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Fig. 1. Oval shape of 
described ore shoot. 

Fig. 2. Horizontal cross section of 
ore shoot on plane z = 0. 

Fig. 3. Arbitrary horizontal 
cross section of ore shoot. 

 
Geometric Fig. 2 is symmetrical relative to Ox and Oy axes. Therefore, area of the 

figure (Fig. 2) located in the first quadrant would be: 

( )0 0 0 2
/2 /2 /2sin cos sin

4
S ydx b d a b dπ π πϕ ϕ ϕ ϕ= = = − =    

0 0
0

/2
/2 /2

1 cos 2 1 1 sin 2 .
2 2 4 4

ab d ab ab abπ
π π

ϕ πϕ ϕ ϕ−= − = − + =  

We obtain formula for calculating ellipse area: 

.S ab=            (4) 

Hence, the product of the semi-axes of the ellipse is the area of the ellipse.  
Using this formula, we can calculate the area of any horizontal section of an elliptic 

hyperboloid (Fig. 3). Thys, the section of the surface (1) on the plane would be written as 
following: 

2 2

2 2
2 2

2 2

1,
1 1

x y

z za b
c c

+ =
   

+ +      
   

 

 
here z  is fixed value. Therefore, semi-axes of the ellipse shown in Fig. 3 would be written 
as following: 

( )
2

2 1za z a
c

= + , ( )
2

2 1,zb z b
c

= +     (5) 

where 0 z h≤ ≤ ; h  is depth of ore shoot. 
Using formula (4), area of the geometric figure from Fig. 3 is determined by following 

formula: 

( )
2

2 1zS z ab
c

 
= +  

 
, 0 z h≤ ≤ . 

Total volume of minerals is determined using following expression: 

( )0 .h
rV S z dz=   

Calculating this integral: 

2 2
2

0 2 2 2
0

1 1 1 .
3

z h
h

r
z

hz zV ab dz ab abh
c c c

=

=

     = + = + = +             
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Thus, the total volume of extracted ore would be: 

2
2 1 .

3
r

hV abh
c

 = + 
 

      (6) 

Assuming that on mining phase t + 1 minerals are extracted from zi to zt+1 by Oz axis. 
In this case, volume of extracted ore would be calculated using formula: 

( )
1

1
3 32 2

1
12 2 2 21 1 1 .

3 3

t
t
t

t

z z
z t t

r t tz
z z

z zz zV t ab  dz ab ab z z
c c c c

+
+

=
+

+
=

    
+ = + = + = + − −               

    (7) 

If a  and are known (Fig. 2), then c  is calculated from the following equation: 

2 2 2

2 2 2 1.x y h
a b c

+ = +  

It is an equation of a boundary of lower base of ore shoot from Fig. 1. In order to 
determine c , values of ( )a n  or ( )b n  should be known, where ( )a n  is longitudinal semi-

axis of ore shoot base; ( )b n  is transverse semi-axis of ore shoot base. Taking ( )0a a=  
and using equation (5), we will have the following expression: 

( ) ( )
2

20 1.ha n a
c

= +  

We will obtain following expression by solving the last equation relative to c : 

( )
( )

2 2

2 21 .
0

a n h
a c

− =  

Consequently 
( )

( ) ( )2 2

0
.

0

a h
c

a n a
=

−
          (8) 

2.2 Characteristics of oval shaped mineral occurrence by overburden 

We consider that only stripping works are performed at phase zero of mining. In this case, the 
overburden volume is an elongated cone, in which the long axis coincides with the 
longitudinal direction of the open pit mine, and the short axis coincides with the direction of 
the transverse axis of the open pit mine (Fig. 4). The depth of phase zero of stripping is set as 
H. Zero slope angle γ0 of phase zero of stripping (Fig. 5). Surface of the cone would be: 

2 2 2

2 2 2 .x y z
A B C

+ =           (9) 

Equation of intersection line of a cone with plane y = 0 is written as: 
2 2

2 2 .x z
A C

=  
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or  

0.x z x z
A C A C

  − + =  
  

 

Then  

0.x z
A C

− =         (10) 

Second line is symmetrical relative to Oz axis. We obtain following equation from Fig. 6: 

0 0.z a tgγ=  

  
Fig. 4. 3D model of ore shoot 
with covering overburden 
rocks during phase zero of 
mining. 

Fig. 5. Vertical longitudinal 
cross section of overburden 
during phase zero of mining. 

Fig. 6. Vertical longitudinal 
cross section of overburden 
(complemented to triangle). 

 
We obtain coordinates of point D(a0, a0tgγ0). Line (10) passes through this point. Thus, 

we get: 
0 0 0 0,

a a tg
A C

γ
− =  

then  

0C Atgγ=  or 0A Cctgγ= .      (11) 

Reviewing cross section of a cone (9) on plane x = 0, we obtain: 

0.A Cctgσ=          (12) 

Equations (11) and (12) are put into (9). Then we get the following equation: 
2 2 2

2 2 2 2 2
0 0

,x y z
C ctg C ctg cγ σ

+ =  

or  

( ) ( )2 2 2
0 0 .xtg ytg zγ σ+ =        (13) 

We obtain following equations from Fig. 7: 

0 0 0 ,h a tgγ=  0 0 0.h b tgσ=  
Then 

0
0 0

0
.a

tg tg
b

σ γ=  

Putting into (13), we get following equation: 
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2
2 2 2 2 20

0 02
0

,
a

x tg y tg z
b

γ γ+ =  

or 
2 2 2

2 2 2
0 0 0

x y z
a b h

+ = . 

In general case, equation of cone corresponding to phase is written as: 
2 2 2

2 2 2 ,
t t t

x y z
a b h

+ =  0, 1, 2,..., .t   n=        (14) 

where t t th a tgγ= . 

   
Fig. 7. Complemented 
overburden frustum. 

Fig. 8. 3D model view after 
first mining phase. 

Fig. 9. Outline of solving 
cubic equation. 

 
Volume of frustum corresponding to phase  is determined by the following formula: 

( ) ( )1 ,t
t
z

gm zV t S z dz+=   

here ( )gmV t  is volume of rock mass (overburden and minerals), extracted during phase t . 
Area of a transverse section of the cone is an ellipse (Fig. 8). Thus, using canonical formula 
(14), we obtain: 

( ) 2.t t

t

a b
S z z

h
=  

Putting it into formula of Vgm, we get: 

( ) ( )
3 32 31 ,
3 3

t
i
t

t

z H
z Ht t t t

gm t t t th
t t h

a b a b zV t z dz b ctg z H h
h h

γ
+

+  = = = + −   
 

with 0, 1, 2,..., .t   n=  
If t = n, then we get a formula for calculation of total volume of rock mass: 

( ) ( )3 31
3b n n nV n b ctg h H hγ  = + −  

, here n n nh a tgγ= . 

The overburden volume is determined by the following formula during phase zero: 

( ) ( ) ( ) ( )1 1 0 1 .b gm gm rV V V V= − −  

The overburden volume during next phase (Fig. 9) would be: 
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( ) ( ) ( ) ( )2 2 1 2 .b gm gm rV V V V= − −  

Using principle of mathematic induction, we derive general formula: 

( ) ( ) ( ) ( )1 ,b gm gm rV t V t V t V t= − − −  0, 1, 2,..., .t   n=         (15) 

Setting values of ( )0bV , rV  taking ( )b b rV V n V= −  and solving optimization problem 
by dynamic programming method, optimum volumes of overburden and ore are determined 
during each mining phase: 

( )* ,bV t  ( )* ,rV t  1, 2,..., .t  n=        (16) 

It should be noted that the solution of the optimization problem in 3D format in 
methodological terms does not differ from the 2D case. The latter is shown in scientific 
works [14 – 16]. We should work with optimal quantities. In this regard, we will omit the 
sign of optimality “*” in the sequel for convenience of writing. We will determine the 
optimal parameters of the pit contours by mining phases knowing the quantities indicated in 
(16).  

Using formula (5) for a mining phase t, we get: 

( ) ( )
1

1 1
2 3

0 0 0 02 21 1
3

t
t t
t t

t

z
z z

r z z
z

z zV t S z dz a b  dz a b z
c c

+
+ +

   
+ = = + = + =        

   
 

3 3
1

0 0 12 2 .
3 3
t t

t t
z z

a b z z
c c
+

+
 

= + − −  
 

  

Hence, the following formula is derived: 

( )
3 3

1
0 0 12 21 .

3 3
t t

r t t
z z

V t a b z z
c c
+

+
 

+ = + − −  
 

      (17) 

Optimum values are determined by solving cubic equation (17) with numeric method: 

1,tz +  0, 1, 2,..., 1.t   n= −  

It should be noted that z0 = 0. 
Equation (17) has single solution. We rewrite (17) to prove it: 

( ) ( )
3 3

1
1 0 0 12 2 1 .

3 3
t t

t t t r
z z

f z a b z z V t
c c
+

+ +
 

= + − − − +  
 

 

First derivative of this equation: 

( )
3

1
1 0 0 2 1 .t

t
z

f z a b
c

+
+

 
′ = +  

 
 

Second derivative: 

( )1 0 0 1
2 .
3t tf z a b z+ +′′ =  

Inequalities ( )1 0tf z +′ >  and ( )1 0tf z +′′ >  hold for all values of 1 0.tz + >  Inequality 
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( )1 0tf z +′ >  shows that function ( )1ty f z +=  is increasing; ( )1 0tf z +′′ >  – graph of this 
function is a concave line. It follows from Fig. 9 that equation (17) has single solution. Root 
of this equation is determined by method of Newton. We could take z  (see Fig. 9) as a 
starting point. 

Following equations are solved to find optimal values of ia  and ib : 

2 2
1 1

2 2
0

1,t ta a
a c

+ ++ +  
2 2

1 1
2 2
0

1.t tb z
b c

+ ++ +  

Then 
2

1
1 0 2 1,t

t
z

a a
c

+
+ = +  

2
1

1 0 2 1,t
t

z
b b

c
+

+ = +  0, 1, 2,..., 1.t   n= −  

We use formula (15) to find optimal values of angles tγ  and tσ . Rewriting it: 

( ) ( ) ( )3 33 3
1 1 1 1b t t t t t t t tV t b ctg z H h b ctg z H hγ γ− − − −

   = + − − + − −      
 

3 3
1

0 0 12 2 .
3 3

t t
t t

z z
a b z z

c c
−

−
 

− + − −  
 

 

In this equation t t th a tgγ= . Using expression: 

( ) ( ) ( )3 31
1 1 1

1 ,t
t t t t r

t t

b
A ctg z H h V t

b b
γ−

− − −
 = + − −  

 ( )1 1 1 ,t t th a tg γ− − −=  1, 2,..., 1.t  n= −  

A cubic equation is obtained relative t tf tgγ= : 

( )33 3
0 0.t i t ta f A f z H+ − + =  

The tf  is determined at 1, 2,..., 1.t  n= −  
Optimal values of slope angles of open pit edges in longitudinal direction are 

determined by following expression using solution of cubic equations: 

( ) ,t tarctg fγ =  1, 2,..., 1.t  n= −  

We will use following equations to find slope angles in transverse direction of open pit 
contours: 

( ) ( ) ,t t t ta tg b tgγ σ=  1, 2,..., 1.t  n= −  

The tσ  is determined at 0, 1, 2,..., 1, .t   n  n= −  
We will use following variables to find external dimensions of oval shaped open pit 

mines: tM  is ellipse axis on its surface in longitudinal direction, tN  is ellipse axis on its 
surface in transverse direction (Fig. 10). Trigonometric equations are derived to find 
parameters of interest using optimal values of ,tz  tγ  and .tσ  

( ) ;t t t tM a z H tgγ= + +  ( )t t t tN b z H tgσ= + + , 

where 0, 1, 2,..., 1, .t   n  n= −  
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Fig. 10. Vertical and longitudinal transverse section for determining Mt and Nt. 
 

The analytical dependences of the phased overburden and ore volumes for the oval-
shaped open pit mines were first obtained for the purpose of using the developed non-linear 
optimal control method conceptually described below in design practice. 

3 Results and discussion 
3.1 Method of solving the problem of nonlinear optimal control during 
optimization of mining steeply dipping ore shoot  

Optimization of the mining operations mode for the created 3D model of phased mining of 
steeply dipping mineral occurrences has its own peculiarities. It is necessary to ensure an 
even distribution of ore reserves being extracted with the minimization of the phased 
stripping ratio on the perimeter of the open pit edges during each mining phase. 

Let Sw be a total volume of extracted rock mass, Sr is volume of extracted ore, u(t) is 
volume of extracted rock mass during phase t, v(t) is volume of extracted ore during phase 
t, then stripping ratio would be determined by using following formula:  

( ) ( )
( )

,
u t

k t
v t

=  1, 2,..., .t  n=  

It is known that for positive values of u(t) and v(t) minimum values of functions k(t) and 
k2(t) are reached in the same points in the domain of functions u(t) and v(t). Thus, further 
we will solve the following problem: 

( ) ( )
( )

2

1 2, min .n
t

u t
J u  t

v t== →        (18) 

It follows from a practical standpoint of rock mass volume u(t), that volume of rock 
mass should be minimum during each phase. On the other hand, from mining operations 
technology standpoint, all volume of rock mass and ore should be extracted during last 
phase n. Thus, we derive following expressions: 

( ) ( ) ( )1 ,x t x t u t= − +  ( ) ( ) ( )1 ,y t y t v t= − +  1, 2,..., ,t  n=       (19) 

where x(t) is total volume of extracted rock mass including phase t; y(t) is total volume of 
extracted ore during phase t.  

We also have following equations: 

( ) ,wx n S=  ( ) .ry n S=           (20) 

Setting x(0) as volume of extracted rock mass during phase zero of mining, y(0) is 
volume of extracted ore during phase zero of mining. Therefore, we get:  
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( ) ( )0 ; ,wx t x  S X∈ ≡    ( ) ( )0 ; ,ry t y  S Y∈ ≡    

( ) ( )0; 0 ,wu t  S x U∈ − ≡    ( ) ( )0; 0 ,rv t  S y V∈ − ≡               (21) 

here X, Y and U, V are permissible values of states x(t), y(t) and controls u(t), v(t). It means, 
that optimum solution of systems (19) – (21) should be found including following 
expression: 

( )* ,x t X∈  ( )* ,y t Y∈  ( )* ,u t U∈  ( )* ,v t V∈  1, 2, 3,..., .t   n=       (22) 

Vector notation is used sometimes: 

( ) ( ) ( )( )0 , 1 ,..., ,x x  x x n=  ( ) ( ) ( )( )0 , 1 ,..., .y y  y y n=  

In our case these are states of extracted rock mass and ore volumes. Each component of 
vectors x , y  has positive value, with following inequality: 

( ) ( ) ( ) ( )0 1 2 ... ,x x x x n< < < <  ( ) ( ) ( ) ( )0 1 2 ... .y y y y n< < < <  

Similarly, ( ) ( ) ( )( )1 , 2 ,..., ,u u  u u n=  ( ) ( ) ( )( )1 , 2 ,...,v v  v v n=  – group of control 
vectors, which is called control (management) of mining operations.  

Function J(u, v) is separable. Hence, dynamic programming method developed by 
Bellman [18 – 21] was used to minimise function (18). Its implementation is described in 
the scientific works [22 – 24]. 

4 Conclusions 
A 3D model for the phased development of contours has been created for oval shaped open 
pit mines. The volumetric contour of the mineral was interpolated by an elliptical 
hyperboloid of the oval form. It is assumed that such a method of interpolation satisfies the 
practice of open pit mining steeply dipping oval mineral occurrences when developing a 
working zone along steep open pit edges without temporary non-operating open pit edges 
with sufficient accuracy. It is clear that the functional type of interpolation and the 
substantiation of its reliability is an independent task. It is necessary to use the actual data 
of the studied digital model of the open pit mine. The optimal control problem discussed in 
this paper depends on the solution of the cubic equation of nonlinear algebra. It was proven 
that the cubic equation has a unique solution. This fact indirectly proves the correctness of 
the chosen method of solving the studied problem. The algorithm for solving the cubic 
equation developed in this paper is very simple. It can be implemented using any 
programming language, in particular C++ or Java. Using the roots of cubic equations, the 
optimum values of the stripping ratio, the slope angles of the open pit edges and the 
volumes of stripping operations are determined, depending on the mining phase. The 
resulting 3D model extends the horizons of object-oriented modeling using integrated 
information complexes and digital field models. 

We would like to thank all the members of the research group for their participation in preparing this 
article.  
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