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Abstract. Within the dual porosity model the authors develop and
theoretically, using synthetic data, substantiate the method for determining
mass exchange coefficient and stress-dependent permeability of fractured
porous reservoir rocks. The proposed filtration test circuit consists of three
sequential measurements of flowrate in a specimen subjected to the varied
external stress σ at the inlet fluid pressure P: by standard scheme (Q0) and
with plugging of fissures at one (Q1) and at the other end (Q2) of the
specimen. The model of the experiment is created, and the analytical
solution is obtained for the direct problem on steady-state flow:
dependences of Q0, Q1 and Q2 on σ and P. The input data are synthesized
by superimposition of multiplicative noise on the exact solution of the
direct problem. The synthesized data are used to derive the inversion
relations for calculating the permeabilities k1 and k2 of fissures and matrix
as well as the mass exchange coefficient by Q0, Q1 and Q2. Using LS
method, the dependences k1(σ) and k2(σ) are reconstructed. The numerical
experiments reveal low stability of inversion by input data. Thus, it is
necessary to perform a cycle of measurements at the increasing input
pressure with subsequent averaging of the results.

1 Introduction
Justification of opening and mining schemes in hydrocarbon extraction, estimation of well
stability, inversion of logging data - this is a far from being complete list of problems
solvable using knowledge on poroperm properties of reservoir rocks [1-3]. The source of
such information can be laboratory experiments, field tests and integrated geophysical
logging [4, 5]. The obtained data are interpreted in the framework of hydrodynamic models
usually selected based on the petrographic analysis of core samples [6].
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Productive strata in many hydrocarbon reservoirs have porous and fractured structure
[7]. For description of fluid flow in such strata, in [8] a dual porosity model is proposed for
a medium composed of elements of two types - matrix and fissures (Fig. 1). Each type is
provided with a set of the governing parameters (pressure, permeability, porosity, etc.) and
the law of mass exchange between the constituent elements. Later on, this approach was
generalized to any types of continuum [9-11] by introduction of notion of a representative
elementary volume and was successfully applied in studying heat and mass transfer
processes in multi-phase systems [12, 13], including oil and gas reservoirs [14-17] and coal
rock masses [18-22].

Fig. 1. Structure of fractured porous medium: 1 – fissures; 2 – matrix.

One of the stages in verification of such models is estimation of permeability and
porosity of constituent elements, as well as determination of an empirical function M
describing mass exchange between matrix and fissures. The objective is reached using data
of laboratory [23, 24] and full-scale [25-27] tests, as well as calculated effective parameters
of media with regular [28, 29] and stochastic [30, 31] structure. In [8, 25], it is assumed that
the function M can only be determined in the transient mode of well operation using the
pressure build-up curve.

The laboratory [32-36] and in-situ [37-39] researches prove the essential dependence of
rock permeability on stresses. With increasing depth, this effect exerts stronger influence on
efficiency of geophysical log data interpretation aimed to identify producing intervals and
estimate poroperm properties of reservoir rocks [40, 41].

This paper, within the model of the fractured porous medium [8], develops and
theoretically substantiates the method which makes it possible to determine the empirical
function of mass exchange between matrix and fissures as well as the dependence of their
permeabilities on stresses by the data of stationary filtration tests.

2 Model of Fractured Porous Medium
Evolution of hydrodynamic fields in a fractured porous medium is described with the dual
porosity model [8] including:
the continuity equations

0)()( 11,11 =+⋅∇+ Mt Vρρϕ , 0)()( 22,22 =−⋅∇+ Mt Vρρϕ ;             (1)

Darcy’s law
η/mmm pk ∇−=V ,                                                         (2)

and the state equations

)(1/ 0 amm Ppc −+=ρρ , )(0
ammmm Ppc −+=ϕϕ ,                              (3)

where subscripts 1 and 2 denote values related with fissures and matrix, respectively, and
superscript 0 - values of the same parameters under the atmospheric pressure Pa; mV  is the
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fluid flow velocity (m = 1,2); mρ , mϕ  and cm are the density, porosity and compressibility

of solid substance; ρ , η  and c are, respectively, the density, viscosity and compressibility

of fluid. The laboratory tests [34, 35, 42, 43] show that under low pressures, the
permeability dependence on stresses is well approximated by the exponential function

)exp( σαmmm Kk −= ,                                                      (4)

Km and mα  are empirical constants. In case of comparable pressure and stresses, σ  in (4)

should be interpreted as an effective stress mp−σ . For rocks with porosity of 5-20%,

≅2α 0.001-0.1 MPa-1.

In [8, 43] it is proposed to describe intensity of crossflows between matrix and fissures
by the linear function

ηβρ /)(),( 12021 ppppM −= ,                                             (5)

where β  is the mass exchange coefficient. In [8, 25] it is mentioned that β  depends on the

specific surface of matrix rocks.
When fluid, matrix and fissures are the weakly compressible media, system (1)-(3) can

be linearized and, with regard to (5), reduced to two equations
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3 Formulation and Solution of Boundary Problem
Let a cylindrical specimen (base area S, length l) be subjected to a constant stress σ  over
lateral surface (Fig. 2). We consider a one-dimensional steady-state flow described by the
system of equations obtained from (6)
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                                              (7)

where p1 and p2 are the functions of the coordinate x directed along the specimen axis. The
permeability-stress dependence is included in (7) through (4).

Fig. 2. Scheme of experiment.

As per the study objective, it is required to develop the filtration test pattern such that to
find the mass exchange coefficient and constants in empirical dependences (4) of stress-
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dependent permeabilities of matrix and fissures. Determination of the parameters k1, k2 and
β  included in (7) needs not less than three ‘quantums’ of information obtained on the same

specimen. The three sequential measurement designs are presented below with relevant
boundary conditions for (7).

T0. Standard filtration tests [45]

aPpp == )0()0( 21 , iPlplp == )()( 21 ,

Pi is the inlet pressure (Fig. 2).
T1. On the left end, fissures are plugged with a penetrant, and using a high resolution

image (obtained, e.g., with electron microscope), the area S1 of these fissures is determined.
On the right end x = l, the fluid pressure Pi is set; on the left end, the atmospheric pressure
is assigned

0)0(1 =V , aPp =)0(2 , iPlplp == )()( 21 .

T2. The right end fissures are plugged and then
0)0(1 =V , aPp =)0(2 , 0)(1 =lV , iPlp =)(2 .

In all tests T0, T1 and T2, the fluid flow rates Q0, Q1 and Q2 are measured on the left
end in the steady-state flow mode.

Omitting cumbersome intermediate calculations, Table 1 presents the final result,
namely, the pressure distribution in matrix and fissures, as well as the fluid flowrate at
x = 0.

Table 1. Solving system of equations (7) at the boundary conditions T0, T1 and T2

T0

ξξ )()()( 21 aia PPPxpp −+==                                           (8)

ηδ
ψδ

l
SppkQ ac
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=                                               (9)
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In (8)-(13) we introduced symbols lx /=ξ , 12 / kk=ψ , 1/)1( kl ψβγ += ,

)/( 11 SSS −=δ , γγψξγξγ cossin),( +=D , )/(tan)1(),( ψγγψγξγ ++=G .

Figure 3a depicts the pressure in matrix in the test design T2 at Pi = 0.2 MPa,
Pa = 0.1 MPa, ψ = 0.02 and different values of γ . The distribution of p2 is asymmetrical

relative to the middle of the specimen.
Figure 3b demonstrates the contour lines of the dimensionless flowrate ),( ψγG : G

weakly depends on γ  at small ψ . This is one of the reasons for instable inversion of the

experimental results by the input data (paragraph 4).
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Fig. 3. Pressure distribution in matrix at boundary conditions T2 (a); contour lines of function G (b).

4 Inversion of Experimental Results
4.1 Synthesis of Input Data

We set some values for the permeabilities *
11 KK =  and *

22 KK = , mass exchange

coefficient *ββ = , as well as the parameters *
11 αα =  and *

22 αα = . The specimen has

radius r = 0.2 cm (S = 12.57 cm2) and length l = 8 cm; the relative area of fissures on the left
end is =δ 0.001, the fluid viscosity is =η 10-5 Pa⋅s (air). For each value of the inlet

pressure Pi and external stress nσσ =  in the chosen ranges ],[ maxmin PP  and ],[ maxmin σσ ,

from formulas (9), (11) and (13), we calculate the flow rates ),(* niQs  (s = 0,1,2) and

synthesize input data by superposing the exact values with multiplicative noise

),()],(1[),( * niQniniQ sss ω+= ,                                               (14)

where ),( nisω  are random values uniformly distributed in the segment ],[ εε− , ε  is a

relative error of measurements. Modern flowrate meters have ε  lesser than 0.5-1% [46].

The numerical experiments involved *
1K = 2500 mD, *

2K = 125 mD, *β = 0.012,
*
1α = 0.025 MPa-1, *

2α = 0.005 MPa-1, minP = 0.2 MPa, maxP = 0.7 MPa, minσ = 0,

maxσ = 5 MPa. Table 2 presents the input data (columns 2, 3 and 4) generated using (14) at

ε = 0.01.

4.2 Determination of Poroperm Parameters of Fractured Porous Medium

Denote ),(/),( 011 niQniQu = , ),(/),( 022 niQniQu = , then, dividing (11) and (13) by (9),

we obtain

1)/(),( uG =+ψδψγψ , 2)/(),2/( uG =+ψδψγψ .                          (15)
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The Macluarin expansion of the tangent at small γ  reduces (15) to a system of

equations with respect to γ  and ψ

12 )3/1)((
)1( u=
+++

+
γψψδ

ψψ
, 22 )12/1)((

)1( u=
+++

+
γψψδ

ψψ
             (16)

which has an analytical solution (columns 5 and 6, Table 2)
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The permeability of fissures at the preset external stress nσ  and inlet pressure Pi is

found from (9)

SPP
niQlk

ai ))((
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1 ψδ
δη

+−
+

=

(columns 6), the matrix permeability 12 kk ψ=  (columns 8) and, finally, the mass exchange

coefficient

)1(2
1

2

ψη
γ

β
+
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l

k

(columns 10). For each nσ , from (4) we find the exact values of the permeabilities

)exp( ***
nmmm Kk σα−=  and calculate the relative errors |/1| *

111 kk−=λ  and

|/1| *
222 kk−=λ , as well as |/1| *ββλβ −=  (columns 8, 10 and 12, Table 2). It turns out

that even at the small measurement error of the flowrate, the determination error of k1 and
β  can exceed 70%. The cause of such errors lies in the contrast of the permeabilities of

matrix and fissures as they can differ by 1-3 orders of magnitude [25]. For better accuracy,
it is necessary to measure flow rates at several values of the input pressure Pi and to assume
the required values as average quantities (last line in Table 2).

Table 2. Input data generated at σ = 3 MPa and the virtual experimental results.

1 2 3 4 5 6 7 8 9 10 11 12
Pi

MPa
Q0

l/min
Q1

l/min
Q2

l/min
ξ γ

k1

mD λ1, %
k2

mD λ2, % β λβ, %

0.20 1.03 0.99 1.01 0.1140 0.3177 946.8 19.8 107.9 0.3 1.528 27.3
0.25 1.55 1.48 1.51 0.1016 0.3026 1060.2 10.2 107.8 0.2 1.399 16.6
0.30 2.05 1.98 2.01 0.0977 0.2605 1102.1 6.7 107.7 0.1 1.040 13.3
0.35 2.57 2.48 2.52 0.1155 0.2830 934.3 20.9 107.9 0.3 1.211 0.9
0.40 3.09 2.97 3.03 0.1247 0.3067 866.5 26.6 108.0 0.4 1.412 17.6
0.45 3.59 3.45 3.52 0.1382 0.3215 782.4 33.7 108.1 0.5 1.535 27.9
0.50 4.09 3.95 4.04 0.2254 0.3326 481.7 59.2 108.6 0.9 1.531 27.6
0.55 4.65 4.44 4.52 0.0627 0.2736 1704.5 44.3 106.9 0.7 1.176 2.0
0.60 5.13 4.93 5.04 0.1443 0.3254 749.5 36.5 108.2 0.6 1.564 30.3
0.65 5.67 5.42 5.52 0.0642 0.2691 1664.7 41.0 106.9 0.6 1.137 5.3
0.70 6.18 5.95 6.06 0.1096 0.2874 983.9 16.7 107.9 0.3 1.255 4.6

1025.1 13.2 107.8 0.2 1.344 12.0

4.3 Determination of Stress-Dependent Permeabilities of Matrix and Fissures

For the model parameters accepted in 4.2 but at ε = 0.02, using (14), we synthesize input
data for Pi = 0.2, 0.25,…,0.7 MPa and nσ = 0, 1,…,5 MPa, perform inversion and find

permeabilities for fissures, ),(1 nik , and matrix, ),(2 nik  (columns 2-7, Tables 3 and 4).
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Table 3. Virtual experimental results on reconstruction of the dependence between the fissure
permeability k1 and stresses.

1 2 3 4 5 6 7 8 9 10 11 12

σn , MPaPi

MPa 0 1 2 3 4 5

K1

mD
θ1    
%

α1

MPa-1
θα    
%

ν1i

%

0.20 2506.6 1979.1 1226.6 904.9 1418.9 494.0 2455.1 1.8 0.02692 7.7 19.3
0.25 2308.0 2049.5 1258.3 1065.1 1264.2 1026.1 2130.0 14.8 0.01620 35.2 13.8
0.30 2929.4 1820.7 2092.1 1442.3 382.7 930.6 2890.2 15.6 0.03081 23.3 22.4
0.35 3022.5 2653.0 1691.9 1829.5 599.7 1321.4 3019.4 20.8 0.02434 2.6 18.7
0.40 2568.6 2325.1 2299.2 1408.3 1739.7 442.6 3239.2 29.6 0.02901 16.0 26.1
0.45 1921.4 1758.0 1218.3 1330.7 773.4 862.8 1957.3 21.7 0.01822 27.1 10.4
0.50 2785.1 2430.2 1987.5 1040.2 770.4 108.4 4382.8 75.3 0.05807 132.3 47.6
0.55 2323.1 2001.1 2160.8 1123.4 1048.3 595.2 2709.9 8.4 0.02686 7.5 19.1
0.60 2837.1 1383.7 1367.5 955.1 691.1 992.8 2136.2 14.6 0.02198 12.1 25.6
0.65 3387.0 2232.5 1684.9 1009.8 1333.6 902.7 2932.6 17.3 0.02477 0.9 15.2
0.70 2094.5 2150.9 1919.4 900.1 770.4 375.7 2781.9 11.3 0.03551 42.0 27.3

2607.6 2071.3 1718.8 1182.7 981.1 732.0 2676.9 7.1 0.02562 2.5 3.9

Table 4. Virtual experimental results on reconstruction of the dependence between the matrix
permeability k2 and stresses.

1 2 3 4 5 6 7 8 9 10 11 12

σn , MPaPi

MPa 0 1 2 3 4 5

K2

mD
θ2

%
α2

MPa-1
θα
%

ν2i

%

0.20 124.9 119.9 115.1 107.4 102.5 97.0 125.9 0.7 0.00515 3.0 0.7
0.25 123.1 120.8 113.2 106.1 103.2 97.3 124.6 0.4 0.00489 2.2 1.1
0.30 124.8 117.7 113.7 107.2 104.0 98.0 124.3 0.6 0.00469 6.2 0.7
0.35 123.6 119.3 114.8 108.4 103.6 99.2 124.5 0.4 0.00452 9.5 0.5
0.40 124.3 118.9 112.1 108.1 101.0 99.1 124.1 0.8 0.00473 5.3 0.9
0.45 125.0 118.9 112.8 107.1 101.8 96.6 125.0 0.0 0.00516 3.2 0.1
0.50 124.8 119.0 112.2 108.8 101.8 98.0 124.7 0.2 0.00489 2.2 0.6
0.55 123.6 117.7 114.3 107.6 101.7 97.3 124.1 0.7 0.00484 3.2 0.7
0.60 124.4 119.9 112.6 105.9 102.7 96.9 124.9 0.1 0.00508 1.6 0.7
0.65 126.2 119.2 112.5 107.5 101.9 96.2 125.9 0.7 0.00534 6.9 0.3
0.70 123.9 118.2 114.1 109.2 102.0 97.6 124.5 0.4 0.00480 4.1 0.7

124.4 119.0 113.4 107.6 102.4 97.6 124.8 0.2 0.00492 1.6 0.2

At each Pi, by the least square method, we find the values of Km (columns 8, Tables 3
and 4) and mα  (columns 10) in the empirical relations

)exp(),( σαmmm Knik −≅ ,                                               (18)

as well as the relative errors |/1| *
mmm KK−=θ  and |/1| *

mm ααθα −=  (columns 9 and 11).

Columns 12 (Tables 4 and 5) present the variation factors

[ ] ∑∑
==

−−=
N

n
m

N

n
nmmmmi nikKnikN

11

2 ),()exp(),( σαν

characterizing the integral approximation error (18), N = 6 is the number of stress levels in
the virtual model experimentation. It is seen that, despite a small error of the input data, at
some Pi the function )(1 σk  (line 3 in Fig. 4) is determined at the considerable error as

compared with reference function (line 1). After averaging the inversion data of ),( nikm
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obtained at all values of the input pressure Pi (last lines in Tables 4 and 5), the variation
factor is never higher than 5% at any random values ),( nisω  in (14) (line 2 in Fig. 4).

Fig. 4. Stress-dependent permeability k1 of fissures.

5 Conclusion
The authors have developed and theoretically, based on virtual experimentation,
substantiated the method that makes it possible to quantitatively estimate the mass
exchange factor β and to establish the empirical dependence of permeability on stresses in
fractured porous reservoir rocks. The interpretation of the synthetic input data is
implemented within the model of continuum with dual porosity, for which the exact
solution of the problem on steady-state fluid flow is obtained. The analytical expressions
are derived for determining permeabilities of fissures and matrix as well as the coefficient β
by flow rates measured in three different measurement designs. As yet the value of β has
been determined only in an operating well by the pressure build-up curve while the
proposed procedure allows such estimating in laboratory using standard equipment.

The work of was carried out with partial support of the Russian Foundation for Basic Research
(Project No. 18-05-00830) and Program of Federal Scientific Investigations (Identification Number
AAAAA-017-117122090002-5).
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