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Annotation. It is investigated the possibility of using so–called 

"complexity–entropy" diagrams for the quantitative description of the 

degree of coal disturbance using coal images obtained by means of 

scanning electron microscope (SEM). These diagrams plot structural 

complexity measure (vertical axis) versus entropy measure (horizontal 

axis) for distribution of probability given in some way on the image. In this 

paper, the values of both measures were calculated on the basis of the 

shearlet transform, and the Jensen divergence was used as the basic 

divergence for calculating the complexity measure. All calculations were 

performed for more than 140 images of coal specimens with various 

degrees of disturbance, obtained from the quiet zone of the seam and the 

outburst zone. As a result of research, it was found that two-dimensional 

distributions for measures of complexity and entropy in most cases are 

informative data sets for differentiating coals by degree of complexity. 

Moreover, such characteristics of these distributions as mathematical 

expectation and, to a less degree, mode can be used as simple quantitative 

descriptors of coals with various degrees of disturbance. These 

characteristics can be used to show the closeness of the spatial structure for 

the analyzed coal specimens to strictly periodic or absolutely chaotic ones. 

On the basis of the obtained results, conclusions about the possibility to 

separate coals according to the degree of their outburst hazard were done. 

1 Introduction 

Natural coal is a product of a complex chain of transformations of heteromolecular 

substances of plant remains under the influence of biological, chemical and tectonic factors 

at high temperatures and pressures. Coal seams may contain a large amount of gas, mainly 

methane, most of which is in the absorbed state in the coal substance [1]. The complex 

irregular structure of the pore space of fossil coals is largely determined by the distribution 

of voids (pores, microcracks) filled with gas by their number, size and directions. The sizes 
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of these voids vary in rather wide limits: from 0.3 nm to 10 cm, and the directions depend 

on the dip and strike of rock layers and movement of material particles in coal seams [2]. It 

is known that the outburst–hazardous coal seams generally have a more disturbed structure, 

which is often a superposition of several systems of exogenous and endogenous fracture, 

and have increased microporosity. Thus, the study and quantitative assessment of natural 

and man–made disturbance of coal can contribute to the understanding of the mechanism of 

rapid release of sorbed methane, the participation of methane in the destruction of coal and 

improve the methods of preliminary prediction of dangerous gas–dynamic phenomena in 

the development of coal seams [3]. 

In general, the processes of multiple destruction of fossil coal (accumulation of 

destructions in coals) are the processes of spatial self–organization of their structure. The 

formation of the main macrofracture in the process of destruction of coal seams is preceded 

by the process of development (origin, movement, growth and aggregation) of microdefects 

(pores, microfractures, dislocations, etc.), which is stochastic in nature [4]. Not so long ago, 

the stochastic behavior of the system could be explained only by the influence of random 

forces. However, in recent years, the chaotic behavior of nonlinear deterministic systems 

has become widely known. Chaos is a rather unusual form of behavior of a deterministic 

system in a steady state. Although the evolution of chaotic system is uniquely determined 

by dynamic laws and no random forces acting on her, the dynamics of the system in some 

area of the phase space is stochastic [5]. Chaos easily occurs in many natural and living 

systems where nonlinearity exists. In this regard, the question arises: does the image of the 

surface structure of the coal show the result of a chaotic or random process? One of the 

methods for solving this problem is the use of "complexity–entropy" diagrams, proposed in 

[6], which are planes of values of a measure of complexity (vertical axis) depending on the 

corresponding values of the entropy of the probability distribution (horizontal axis). When 

constructing the “complexity–entropy” diagrams, the key issue is the choice of the method 

of forming the measure. In the case of studying the disturbance of coals by their SEM–

images, methods of forming a measure that take into account the high degree of anisotropy 

of the surface of the coal samples are interesting. 

Over the past twenty years, various methods have been proposed to recognize 

anisotropic objects, among them: directional wavelets, complex wavelets, contourlets, 

curvlets, etc. In turn, Donoho D., Labate D. and Kutinek G. [7–11] suggested a slightly 

different approach to the analysis of anisotropic components based on shearlet–

transformation. Unlike wavelets or curvlets, the system of shearlets is built in the class of 

affine systems and has the ability to recognize the directionality due to the additional shift 

parameter. Shearlets have characteristics that favorably distinguish them from a number of 

similar functions: a finite number of generating functions; optimal representation of the 

anisotropic characteristics of the analyzed data; fast algorithmic implementation; unified 

approach to the decomposition of continuous and discrete data [12]. For the first time, the 

use of a shearlet transform to create "complexity–entropy" diagrams was proposed by 

Brazhe A. in [13]. In this paper, we studied the possibility of using "complexity–entropy" 

diagrams based on shearlet transform to quantitatively describe the degree of disturbance of 

coals by their SEM–images. 

2 Methodology of research 

To produce modified shearlets, a dilation matrix aA  and a shear matrix sS  are used: 
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Thus, given scale a , shear s , and translation t , it is possible define the “mother” shearlet 

function 

  3/4 1 1

, ,a s t a sa A S x t        , 

and on its basis a continuous shearlet–transformation of a digital image, as a convolution of 

the image with scaled, sheared and translated copies of the “mother” shearlet function. 

The discrete system of shearlets associated with shearlet  , is the set of functions 

      1 1 2

, , ,2
: , ,jj k m j j k mSH a A S x t j k m        ў ў . 

In general, the scale parameter is selected from the set  j j
a 




ў
Ў . The shear parameters 

 ,j k k
s




ў
Ў  are chosen dependent on j , so that the direction of interest varies according 

to the scale. Finally, the translation parameter 
mt  is chosen from 

1 2c cў ў  for some 

1 2( , )c c Ў , which provides the necessary flexibility of a construction for many 

applications. For the image size M N  it is accepted to determine the discrete values of 

the parameters as follows [14]: 

 2

02 4 , 0,..., 1j j

ja j j     , 

 , 2 , 2 2j j j

j ks k k      

 1 2, ,m

m m
t m I

M N

 
  
 

, 

where 0 20.5logj N ,   1 2 1 2, | 0,1,..., 1, 0,1,..., 1I m m m M m N     . This leads to 

the following shearlet transform [13]: 

  
, ,

3 4 1 1

, , , , ,1/2( ) ( )
j j k m j j kj k m a s t a s mx x a A S x t        

 
. 

Thus, a discrete shearlet transform is defined as a mapping from the original image to a set 

of shearlet coefficients: 

 
, ,( ) : , j k mSH f f f a . 

It was shown in [13] that because the translation grid (dimensionality m ) is scale 

independent and redundant, the shearlet coefficients can also be represented as 

     ,( ) , ,j k iSH f S x y S x y  , where ( , )iS x y  are images, obtained by convolution of 

the function ( , )f x y  with directional filters of different spatial scales of the same size as 

the function ( , )f x y . 

3 Entropy and complexity measures based on shearlet 
transform 

Both entropy and complexity measures are defined as functionals of some probability 

distribution  , 1,...,iP P i L  . Intuitively, the energy of shearlet coefficients 

2( , ) ( , )i iE x y S x y  describes how the corresponding scale and orientation is represented at 

a given location of the image ( , )f x y . Starting from ( , )iE x y  we can define local shearlet 

features distributions in the image as follows [13]: 
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where  *( , ) ( , )
ji iE x y K E x y  , 

j
K  denotes a Gaussian kernel with a standard 

deviation 0 1

0 2
j j

j

 
   . 

Based on the obtained probability distribution  , 1,...,iP P i L   Shannon entropy 

[ ]H P  and Shannon normalized entropy [ ]NH P  can be defined as 

 2[ ] logi ii
H P P P  , 

 [ ] [ ] / H[ ]N

eH P H P P , 

where 
max 2[ ] logeH P H L   is the entropy of an equiprobable (uniform) probability 

distribution 
eP , in which all shearlet–features are represented with equal probability 

1/iP L . 

As a measure of complexity in this work, we use the statistical measure of complexity 

[ ]C P  proposed by Lopez–Ruiz et al. [6] and defined as 

 JS[ ] [ , ] [ ]N

eC P Q P P H P , 

where 
JS max[ , ] /eQ J P P J  is a measure of disequilibrium describing the distance between 

the observed P  and uniform 
eP  statistical distributions by means of the distance measure 

based on Jensen–Shannon divergence: 

 
1

[ , ] ( [ ] [ ])
2 2

e

e e

P P
J P P H H P H P

 
   

 
. 

Clearly, [ , ] 0eJ P P   if 
eP P  and is maximal, 

  max 2 2 20.5 1 log ( 1) 2log 2 logJ L L L L L        , when only one feature, say m th, 

is present, while all others are absent: 1|iP i m  , 0 |iP i m  . 

A measure of complexity defined in this way quantifies both randomness and degree of 

spatial correlations in the data, and therefore there is a range of admissible complexity 

measure values 
min max[ , ]C C  for each entropy value H  [6, 15, 16]. For a distance measure 

based on Jensen–Shannon divergence, the lower bound is found by a family of distributions 

where one of the outcomes 
iP  has probability 1 ,...,1iP L  and the rest jP  have uniform 

probabilities    1 1 |j iP P L j i    . The upper bound is formed by distributions with 

п L  outcomes having probabilities 1 , 1,...,iP n i n   and the rest having zero 0jP  , 

1,...,j n L   [13]. 

4 “Complexity–entropy” diagrams 

In this paper, the above–mentioned interrelated measures of entropy and complexity of 

digital images were used to construct of "complexity–entropy" diagrams. Thus, points on 

these diagrams show values { ( , ), [ ( , )]}NC P x y H P x y  calculated for each pixel of the 

digital image, and lines show values of the lower minC  and upper maxC  bounds of the range 

of allowable values of the measure of complexity C . For construction of summary 

"complexity–entropy" diagrams, showing results of the analysis of a set of images, instead 

of the values { ( , ), [ ( , )]}NC P x y H P x y , modal values { ( , ), [ ( , )]}NC P x y H P x y  for each 

image from the set were shown in these diagrams. 
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To implement an algorithm for constructing the above diagrams, a computer program in 

Python was developed using the free program shearlexity [17], standard Python libraries 

scipy and matplotlib for scientific calculations and visualization, as well as fast discrete 

transform library PyShearlets [18]. 

The interpretation of these diagrams is based on the following intuitive considerations: 

zero entropy and complexity correspond to a completely regular structure, and high entropy 

and zero complexity correspond to a completely random spatially independent noise [19, 

20]. 

5 Source data 

In this study, imaging of coal specimen surfaces was performed using scanning electron 

microscopes JEOL JSM 5910–LV and Jeol–6610–LV. The spatial resolution of the 

microscopes is more than 10 and 100 nm for secondary and reflected electrons, 

respectively. Low–energy secondary electrons are used in imaging surface topography. 

Natural–shape coal specimens were placed in a work camera via a gate. In the mode of 

registration of secondary electrons, the work camera was vacuumized (with >10
-6

 mm hg 

vacuum). Secondary electrons were recorded by a standard detector, which a type of a 

sweeping–field photomultiplier tube connected to scintillator. 

As the source data for this study was IPKON collection of coal specimens from the 

Zapolyarnaya mine (Vorkuta) and the Kirov mine (Leninsk–Kuznetsk), obtained from 

outburst–nonhazardous zones and outburst zones. For our research, we analyzed 

microstructure of coal surface in the images magnified 1000 times which showed coal 

grains with a characteristic size from 0.5 to a few microns. Methane can desorb from such 

grains, diffuse and flow in fractures as free gas [21]. 

Processed regions of these images were same as in [22], which further allowed to 

compare obtained results with the results from [22]. 

6 Research results 

In Figs. 1, d and 2, d, examples of typical “complexity–entropy” diagrams constructed for 

selected regions of test coal surface images (Figs. 1, a and 2, a) are shown. These diagrams 

are based on values for measures of local entropy H  and complexity C , which are 

demonstrated in Figs. 1, b, c and 2, b, c. As can be seen from these diagrams, the 

distribution of values { ( , ), [ ( , )]}NC P x y H P x y  obtained for the image of the surface of 

coals from the quiet zone is more compact than the corresponding distribution of values 

{ ( , ), [ ( , )]}NC P x y H P x y  for the image of the surface of coals from the outburst zone. It 

was also found that most of the processed regions of coal images have smooth unimodal 

distributions of values for local Shannon entropies and Jensen–Shannon complexity (Figs. 

1, e, f  and 2, e, f). This observation suggests the possibility of using the predominant values 

of the selected measures of entropy and complexity as quantitative descriptors of the degree 

of order and structure of the coal surface regions. At the same time, taking into account the 

nature of the analyzed distributions, it seems statistically correct to use the mean or modal 

values of these distributions as such values. Both variants were analyzed in the context of 

the problem of coal separability from the quiet (outburst non-hazardous) zone and the 

outburst zone by their SEM–images. As a result, it was found that both modal and mean 

values of entropy and complexity measures indicate a random (not chaotic) nature of the 

distribution of anisotropic properties for most of the analyzed images regions with a 
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sufficiently close scatter of values:  0,62 0,94H   ,  0,09 0,31С   and 

 0,65 0,96H   ,  0,08 0,33С   for the mean and modal values, respectively. 

 
 a b c 

           
 d e f 

Fig. 1. Images of local entropy H  (b) and complexity C  (c), the corresponding histograms (e and f), 

and the “complexity–entropy” diagram (d) built for the region of the image of coal from the quiet 

zone (a). A cross in the “complexity–entropy” diagram shows the mean value of the measures of 

complexity and entropy. 

 
 a b c 

           
 d e f 

Fig. 2. Images of local entropy H  (b) and complexity C  (c), the corresponding histograms (e and f), 

and the “complexity–entropy” diagram (d) built for the region of the image of coal from the outburst 

zone (a). A cross in the “complexity–entropy” diagram shows the mean value of the measures of 

complexity and entropy. 
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At the same time, the images of coals from the outburst zone have in most cases a higher 

mean local complexity and a lower mean local entropy compared to the images of coals 

from the quiet zone of the seam (Fig. 3, a). Modal values, as seen in Fig. 3, b, practically do 

not find this separability. 

 

   
 a b 

Fig. 3. The distribution of mean (a) and modal (b) local entropy H and complexity C  values, 

calculated for SEM–images of coals from the outburst zone ( ) and the quiet zone of the seam ( ). 

 

Comparing the obtained results with the results of multifractal analysis [22, 23] it can be 

noted that both approaches indicate a more complex surface structural organization for 

coals from the outburst zone compared with coals from the quite zone of the seam. This is 

manifested by the mean values of measures of local statistical complexity and in the spectra 

of fractal dimensions. The discovered regularities require further study and confirmation on 

a larger series of test samples to reveal the potential, which, as our studies have shown, is 

inherent in the described methods of SEM–image processing. 

5 Conclusions 

The following conclusions can be drawn from the present study: 

 In most cases, the two-dimensional distributions for measures of complexity and 

entropy are informative data sets for differentiating coals by degree of complexity. 

Moreover, such characteristics of these distributions as mathematical expectation and, 

to a less degree, mode can be used as simple quantitative descriptors of coals with 

various degrees of disturbance. These characteristics can be used to show the closeness 

of the spatial structure for the analyzed coal specimens to strictly periodic or absolutely 

chaotic ones. 

 By analyzing more than 140 test images of coal specimens from the quite zone of the 

seam and the outburst zone, it was found that most of the studied specimens exhibit a 

random (not chaotic) nature of the distribution of anisotropic properties. 

 In most cases, images of coals from the outburst zone have a higher mean local 

complexity and a lower mean local entropy compared to images of coals from the quite 

zone of the seam. 
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