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Abstract. Pareto joint inversion for two or more data sets is an attractive 

and promising tool which eliminates target functions weighing and scaling, 

providing a set of acceptable solutions composing a Pareto front. In former 

author’s study MARIA (Modular Approach Robust Inversion Algorithm) 

was created as a flexible software based on global optimization engine 

(PSO) to obtain model parameters in process of Pareto joint inversion of two 

geophysical data sets. 2D magnetotelluric and gravity data were used for 

preliminary tests, but the software is ready to handle data from more than 

two geophysical methods. In this contribution, the authors’ magnetometric 

forward solver was implemented and integrated with MARIA. The gravity 

and magnetometry forward solver was verified on synthetic models. The 

tests were performed for different models of a dyke and showed, that even 

when the starting model is a homogeneous area without anomaly, it is 

possible to recover the shape of a small detail of the real model. Results 

showed that the group analysis of models on the Pareto front gives more 

information than the single best model. The final stage of interpretation is 

the raster map of Pareto front solutions analysis. 

Keywords: Pareto joint inversion, PSO, global optimization, scientific 

computing, magnetometry, gravimetry 

1 Introduction  

Nowadays, joint inversion undoubtedly is seen as a powerful tool useful for retrieving the 

model from two or more sets of geophysical data, where each of these sets is represented 

with the same coordinates of vertices and the same number of parameters. Each of the 

different methods used in the joint inversion is sensitive to other physical attributes, so 

merging these results is especially valuable as it provides more reliable information about the 

predicted model. Joint inversion seems to be very promising, but it is still quite a serious 

challenge for today’s geophysics. The complexity of the issue increases with the number of 

model parameters required (the more parameters, the more dimensions of solution space). 

Additionally, classic joint inversion suffers from the necessity of weighting and scaling target 

functions from incomparable methods. One of the possible strategies of solving this problem 

is the Pareto approach [2, 4, 6, 10, 12, 15], however, it does not provide one sure answer 

about the final model, but rather kind of set of equally feasible solutions. What is worse, the 

same set of parameters can produce a few different models what raises the problem of 

equivalence. Taking all those facts into account, we decided to explore the problem of Pareto 

joint inversion effectiveness in solving the problems of scaling, weighting, and final solution 

interpretation using the simple dyke model. 
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1.1 Joint inversion 

When two or more sets of geophysical data are available, using them together in an inversion 

procedure seems to be straightforward. Surprisingly even if the idea dates back to the 

beginning of the 19th century, in geophysical application it was not proposed until 1975 [17]. 

At early applications data from similar methods were combined into one joint target function 

but it is more desirable when information comes from observation based on different physical 

processes. Unfortunately, simple combining misfits between observed and predicted data 

suffer from some serious disadvantages. First of all regular optimization procedures require 

one result returned by target function which in turn introduces the necessity of scaling misfits 

from individual methods. This operation is not obvious and usually requires arbitrary 

decisions. The second important problem is the correct uncertainty analysis for two combined 

weighted objective functions. One of the possible solution of all these problems is the Pareto 

inversion concept that was successfully introduced to geophysical analysis at the beginning 

of the 21st century [10]. 

1.2 Pareto approach 

In the basic form of joint inversion information from different sources are combined into one 

target function. Separated target functions are misfits between modeled and observed data: 

 𝑓 = ∑
(𝑑𝑝𝑖 − 𝑑𝑚𝑖)

2

𝜎𝑖
2

𝑛

𝑖=1

 (1) 

where: 

𝑑𝑝 – measured data 

𝑑𝑚 – model data 

𝜎2 – 𝑑𝑝 variance. 

Alternatively, multiobjective optimization theory - which has its roots in econometrics - 

utilizes simultaneous analysis of many target functions and their reciprocal relations [4].  

Joint inversion of more than one set of geophysical data entails scaling and weighting, as 

the results of each method differ from each other and are hard to compare. Unfortunately, 

such operations lead to significant loss of the information about multidimensional solution 

space. Moreover, it is a serious challenge to conduct uncertainty analysis for a few weighted 

objective functions correctly. Where more than one criterion comes into play it is not so 

obvious which solution is the best. In Pareto approach no parameter is more important than 

any other, so the inversion process implies accepting only these solutions, which produce 

better value for at least one target function and in the same time does not worse any other. 

The result of one single inversion run is a vector of values for each target function, which 

represents the coordinates of a point in the multi-dimensional solution space. Nonetheless, to 

get a reliable outcome, the inversion process is conducted many times and all results are 

composed into one set, where the optimal (non-dominated solutions) can be joined with a 

curve and make up so-called Pareto optimal front [6]. In contrast to the classic approach, 

there is no single best result obtained, but rather a set of all equivalent Pareto-optimal 

solutions, from which the best can be chosen taking into account qualitative - e.g. geological 

information. The multiobjective minimum can be described as: 

 
𝑚𝑖𝑛(𝑓1, 𝑓2, … , 𝑓𝑛), 𝒙 ∈ 𝑺 (2) 
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where: 

𝑓- target function, 

𝑆 - space of acceptable solutions. 

Solution vector x ∈ S dominates solution vector y ∈ S if and only if x provides better 

value in at least one dimension, not worsening any other [18]. Assuming that the function is 

minimized, x dominates y only if in at least one dimension x has a smaller value than y and 

at the same time x does not have bigger value than y in any other dimension: 

 
𝒙 ≺ 𝒚 

𝑖𝑓∀𝑖: 𝑓𝑖(𝒙) ≤ 𝑓𝑖(𝒚)ᴧ∃𝑗: 𝑓𝑗(𝒙) < 𝑓𝑗(𝒚) 

(3) 

where 𝑺 ⊂ 𝑅𝑛and 𝑖, 𝑗 ∈ {1, . . . , 𝑛},where n- number of dimensions 

Set S* of nondominated solutions composes into Pareto front (P): 

 
𝒚 ⊀ 𝒙 ∧ 𝒙 ⊀ 𝒚 

𝑷 = {𝒙 ∈ 𝑺|∄𝒚 ∈ 𝑺: 𝒚 ≺ 𝒙} 

(4) 

In this contribution more than on Pareto front we focus on the set of all solutions fulfilling 

the Pareto criterion, what we call Pareto optimal set, as every obtained result is valuable and 

can bring different information about the retrieving model. In this case, the best misfit’s 

values do not necessarily imply the feasible model shape. Obviously, some of these solutions 

could be improved by enlarging a number of allowed iterations or by additionally applying a 

local optimization method. 

1.3 PSO - Particle Swarm Optimization 

Particle Swarm Optimization (PSO) is a global optimization metaheuristic and stochastic 

method, coupling satisfactory precision with fast solution space searching. An algorithm was 

originally proposed by Kennedy and Eberhart in 1995 [9] and evolved with time, as it became 

very popular and gained the interest of scientists who worked over its improvement, 

presenting a large amount of its variations [5, 13, 14]. The algorithm was inspired by behavior 

of a flock of birds or shoal of fish looking for food. Initially, in PSO, the population of 

particles is randomly scattered in the n-dimensional solution space, where each dimension 

represents the respective geophysical parameter. Position of the particle, as a set of 

coordinates of all dimensions, strictly defines the proposed model, where the value of every 

dimension’s coordinate relates to the value of a geophysical parameter. Further, the whole 

swarm moves in searching for the optimum of the function, iteratively changing each 

particle’s position. In MARIA PSO was implemented in bare bones mode, where velocities 

were eliminated and new particle’s positions were set according to the normal probability 

distribution of mean 
𝑝𝑖𝑘+𝑝𝑔𝑘

2
 and standard deviation |𝑝𝑖𝑘 − 𝑝𝑔𝑘|, where 𝑝𝑖𝑘 and 𝑝𝑔𝑘 are the 

previous best positions in 𝑘𝑡ℎ dimension, for an individual and for the neighbourhood (in our 

case of the whole swarm), respectively [8, 14]. In other words, in every step particles move 

to the new position with some probability, which has its biggest value exactly in the middle 

of the way between actual particle and the particle representing the best solution found so 

far. 
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1.4 Software tools 

To conduct all tests we used the software MARIA (Modular Approach Robust Inversion 

Algorithm), previously created as a part of former studies related to the Pareto joint inversion 

project [11]. MARIA was written in C language, under Fedora OS, using gsl scientific library, 

OpenMP for parallelization and GTK+ for Graphical User Interface. One of the priorities 

was to deliver a solution which would be flexible enough to handle data from two or more 

geophysical methods with the possibility to swap modules. Therefore, the first version [11] 

was combining magnetotellurics (MT) and gravity data, and as the investigations moved on, 

the MT module was swapped with magnetometry one. The main optimization engine was 

based on PSO algorithm in bare bones mode [8, 9, 14] and parallelized using OpenMP. 

2 Methods 

The gravity and magnetic methods are non-invasive, potential field methods which are 

commonly used for near-surface investigations. These methods are most useful if the physical 

parameters of search objects differ enough from the background regarding density and 

magnetic susceptibility [7]. The shape and amplitude for gravity anomaly are functions of 

density and depth of a body. For magnetic anomaly, the shape and amplitude are a function 

of magnetic susceptibility, depth of a body as well as magnetic field intensity and inclination 

angle in the area studied. In this paper, we focus on applying Pareto scheme for solving the 

problem of combined magnetic and gravity data inversion. Both methods are well known for 

problems related to multi-modality, solution equivalence, and low resolution. It is known that 

the Pareto approach can provide detailed insight into details of feasible solutions and support 

the decision of choosing the final one [2, 6, 10, 12, 15]. Herein, we analyze the other approach 

in which solutions from Pareto front are taken into consideration all at once. This can provide 

information about preserved model details that cannot be observed and interpreted when only 

one model is studied. Also, this approach can limit the adverse effects of multi-modality and 

equivalence. It is important to stress that obtained result cannot be interpreted as a probability 

distribution (like a result of MCMC methods) as it does not hold required assumptions, 

especially about symmetrical solution space sampling. 

The forward solvers for gravity and magnetic methods use the superposition principle for 

gravity and magnetic effects respectively. Modeled gravity and magnetic effects are 

calculated as a sum from all nodes of the calculation grid. Each node is treated as a rectangle 

with density and magnetic susceptibility assigned. The magnetic effect for a single node is 

calculating using equation [16]: 

 

𝑇 = 2𝑘𝐹𝑒 [𝑠𝑖𝑛2𝐼 𝑙𝑛
𝑟2𝑟3

𝑟4𝑟1
+ 𝑐𝑜𝑠2𝐼(𝜃1 − 𝜃2 − 𝜃3 + 𝜃4)] (5) 

where: 

𝑘 - magnetic susceptibility, 

𝐹𝑒 - the intensity of the magnetic field [nT], 

𝐼 - inclination angle [°], 

𝑟, 𝜃 - parameters defining the body’s geometry (distance and angle). 

 

The gravity effect is calculated using equation [3, 11]: 
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𝑔 = 2𝛾𝜌 ∑
𝛽𝑛

1 + 𝛼𝑛
2 [𝑙𝑜𝑔

𝑟𝑛+1

𝑟𝑛
− 𝛼𝑛(𝜃𝑛+1 − 𝜃𝑛)]

𝑁

𝑛=1

 (6) 

where: 

 𝛾 - gravitational constant (6.67 ∙ 10−11 [
𝑚3

𝑘𝑔∙𝑠2]), 

 𝜌 - node density [
𝑘𝑔

𝑚3], 

𝑟𝑛+1, 𝑟𝑛− distance between measurement point and neighboring vertex of rectangle  

   assigned to node, 

𝜃𝑛+1, 𝜃𝑛- angle between x axis and radius designated from measurement point to  

  neighboring vertex, 

𝑥𝑛 , 𝑧𝑛- node coordinates, 

𝛼𝑛 =
𝑥𝑛+1−𝑥𝑛

𝑧𝑛+1−𝑧𝑛
, 

𝛽𝑛 = 𝑥𝑛 − 𝛼𝑛𝑧𝑛. 

The above equations are valid for 2D models, which was the case of our studies. 

3 Results and discussion 

The application of Pareto joint inversion is demonstrated on two synthetic data sets. A 

dipping prism model which simulates magmatic intrusion (dyke) was used as the first 

synthetic example. In Fig. 1 and Fig. 5 models used for generating synthetic data are shown. 

Calculation of gravity and magnetic data was made for 200 evenly spaced points along the 

profile. White Gaussian noise was added to the generated data with different signal-to-noise 

ratio (50 dB for gravity and 10 dB for magnetics). The noise-contaminated data are shown in 

Fig. 3-4 and Fig.7-8. The physical properties of both “real” models are presented in Table 1. 

In calculated models, the inclination angle was assumed as 75° and intensity of magnetic 

field as 58 000 nT. These values are typical for Finland [1]. The starting models for the 

inversion in both examples are presented in Fig. 2 and Fig. 6. 

Table 1. Physical properties of both “real” models. 

 
density [kg/m3] magnetic susceptibility 

dyke 3200 0.01 

surrounding 2300 0.00001 

In both examples, 128 particles were used in PSO engine. All vertices of the models could 

change their position during the inversion process but their number is fixed. The physical 

properties- density and magnetic susceptibility could change their value in the range typical 

for real rocks. Both models represent a dyke built of igneous rocks, while the surrounding is 

formed by sedimentary rocks.  
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Fig. 1. Model used for generating synthetic data. Fig. 2. Geometry for starting model in the first 

example. 

The analysis of this simple model was aimed at checking the correctness of the 

algorithm’s operation. In Fig. 3-4 fits of gravity and magnetic data for the simple dyke model 

are shown. The field data are represented by a blue curve, the model response before 

inversion by the green line, and example of well-fitted model after inversion by the red one. 

These results are a compromise between the two data sets. The blue curves represent data 

used as input for the inversion. In the beginning, the curves differ significantly. After the 

inversion process, it is possible to select a solution from the Pareto front that has a small 

misfit for the magnetometry and gravimetry data. This solution with almost perfect curve 

fitness produces a significantly different model from the real one.  

 

Fig. 3. Fits of gravity data with RMS error 0.23553 for starting model and 0.0857739 for the selected 

model.  
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Fig. 4. Fits of magnetic data with RMS error 804.544709 for the starting model and 100.608596 for 

the selected model. 

The second example includes a more complicated model with small features (Fig. 5). The 

aim of inversion for this model was to check the possibility of recovering the shape of small 

details of a real model starting from the rectangular area. The denser mesh was used.  

  

Fig. 5. The model used for generating synthetic 

data. 

Fig. 6. Geometry for starting model.  

In Fig. 7-8 fits of gravity and magnetic data for the model with small details are shown.  

 

Fig. 7. Fits of gravity data with RMS error 0.314525 for starting model and 0.032984 for the selected 

model. 
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Fig. 8. Fits of magnetic data with RMS error 3280.961360 for starting model and 644.734640 for the 

selected model. 

Fig. 9 shows a set of solutions obtained for the model with small details. In Fig. 10 

magnified set of accepted solution is shown. It is important to note that we do not consider 

Pareto front, understood as described with formula 3 and 4, but rather set of all Pareto valid 

solutions. 

  

Fig. 9. Set of obtained solutions. Fig. 10. Magnified set of obtained solutions. 

Many models generated during inversion return a similar fit. This is related to the 

equivalence for both gravity and magnetic methods. Due to the fact that it is not possible to 

choose the best model, another method was proposed to check the correctness of the 

algorithm’s operation in order to recover the shape of the modeled body. Instead of 

examining single models, we analyzed the aggregated models in the form of one solution 

map. All Pareto solution models were analyzed. The number of points in the raster was 

counted for all 1131 runs. The results are presented as a heat map from the best 10 percent 

of solutions in Fig.11. In order to select the best solutions, on the basis of gravity and 

magnetic fitting error, the distance of points on the Pareto Optimal Set from the origin of 

coordinates was calculated.  
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Fig. 11. The number of points in the raster for the best 10% of solutions. 

4 Conclusions 

Group analysis of models on the Pareto set gives information about the location of a dyke 

and some of its details. It can be concluded that even if the starting model is a rectangular 

area, it is possible to recover the shape of the real model if the set of solutions is analyzed. 

As expected the upper part of the model is well recovered whereas recognition of the deeper 

part is poor. This result corresponds with well-known feature of potential methods, namely 

the ability to recover more details in a shallow part of the analyzed medium. 
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