
Development and debugging of MPI programs
on the environmental research computing portal
in the mining region

Andrey Vlasenko1,1, Igor Sotnikov1, Eugeniya Prokopenko2, and Anton Demidov3

1Kemerovo State University, 650000 Kemerovo, Russia
2Kuzbass State Technical State University, 65000 28 Vesennya st., Kemerovo, Russia
3 RMIT University, Melbourne, Australia, 3024

Abstract. The article is devoted to the development of automated
debugging software for parallel programs used in the analysis of the impact
of mining on the ecology of the region using the MPI communication
interface. The system combines the approaches of static analysis of the
source code and automated control of correctness at runtime. Each
approach implements a separate component of the system. An innovative
idea embedded in the system is to determine the necessary checks in the
patterns of erroneous behavior that the user can control by modifying the
templates from the proposed set, adding their own or deleting ones that are
not required. A system for describing patterns is described and several
examples of formalizing errors are given. Some of the examples of errors
are suitable for static analysis, while others are suitable for automated
verification. The architecture and the general scheme of the automated
debugging system on a computing cluster are presented. Another software
project described in the article is an engineering computing portal. The
portal is an expandable environment for a comprehensive study of the
environmental problems of the region, integrating various services united
by high-performance computing.

1 Introduction

In the modern scientific world, the accuracy of numerical models of the studied objects
and phenomena continues to increase, which causes an avalanche-like increase in
computations in HPC problems.

The creation of an information portal that combines information on mining and their
further use into a single model is extremely important for the Kuzbass. The region produces
more than 250 million tons of coal, 20 million tons of iron ore. Accordingly, the total
emissions into the atmosphere exceed 1 million tons, into the water basin – 500 thousand
tons [1].

In the mining region, in which enterprises that extract, enrich and process coal, iron ore,
gold (Kuzbass, Western Siberia, Russia), it is important to create a single computing portal

1 Corresponding author: vlasenko_a@list.ru

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons
Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).

E3S Web of Conferences 134, 02003 (2019)
SDEMR-2019

https://doi.org/10.1051/e3sconf/201913402003

that links together all the scattered information about the environmental impact. This
information comes from each mine, mine, processing plant, metallurgical and chemical
plant. The analysis of this information will allow creating a computer model of the
environmental impact of the entire industrial complex of Kuzbass, identifying the most
dangerous sources of pollution and putting together administrative, economic and
engineering environmental protection measures.

In turn, the accuracy of data processing directly determines the quality of decisions to
improve the environmental situation, and increases the requirements for developers of the
portal software complex [2].

It is the reason for the active growth in the scale of high-performance computing. This
dynamic can be easily traced by regularly updated rating lists of supercomputers, for
example, the Top500 world list and the Russian Top 50. The increase in HPC tasks is
reflected in the increase in the number of threads and processes of the corresponding
parallel programs.

Despite the fact that many researchers use off-the-shelf computing packages
(OpenFOAM, ANSYS products, FlowVision, etc.), a significant share in the HPC segment
is occupied by proprietary programs. This fact, in particular, is associated with the
development of new numerical methods, the search for optimal software technologies for a
specific task, etc. Various implementations of the MPI standard continue to remain the most
common programming tools for supercomputers. One of the main problems with MPI
programming is debugging. Even in the case of sequential programs, debugging sometimes
takes up to 2/3 of the total development time. And when compiling parallel code, the
developer may encounter many additional semantic errors caused by the interaction of
asynchronous processes and the use of MPI technology. Clause 3 describes some of these
errors, and a more detailed look at their classification can be found in [3, 4]. The observed
tendency to increase the size of the tasks being solved only aggravates the situation with
debugging.

To detect logical errors in parallel programs, such dialog debuggers as Rogue Wave
TotalView [5] and Allinea Distributed Debugging Tool (DDT) [6] are traditionally used.
However, as the number of processes in programs increases, the usefulness of dialog
debuggers decreases. After all, to observe the behavior of each of one hundred processes,
executing the program in steps, is an incomparably more difficult task than the behavior of
ten. In practice, users debug the task on “small dimensions” (this term refers to the number
of processes / threads, the number of iterations of loops, the dimensions of arrays, etc.), and
then upload it to the target computing resource in full scale. But at the same time, new
errors may appear that did not arise on “small dimensions”. In this case, dialog debuggers
are almost useless.

The debugging system described in the article is able to function as a standalone
software product. However, work is currently underway to integrate the system into the
engineering computing portal [7, 8]. The purpose, structure of the portal, as well as the
integration scheme of the debugging system are given below.

2 Materials and Methods

To detect logical errors in parallel programs, such dialog debuggers as Rogue Wave
TotalView [11] and Allinea Distributed Debugging Tool (DDT) [9] are traditionally used.
However, as the number of processes in programs increases, the usefulness of dialog
debuggers decreases. After all, to observe the behavior of each of one hundred processes,
executing the program in steps, is an incomparably more difficult task than the behavior of
ten. In practice, users debug the task on “small dimensions” (this term refers to the number
of processes / threads, the number of iterations of loops, the dimensions of arrays, etc.), and

2

E3S Web of Conferences 134, 02003 (2019)
SDEMR-2019

https://doi.org/10.1051/e3sconf/201913402003

then upload it to the target computing resource in full scale. But at the same time, new
errors may appear that did not arise on “small dimensions”. In this case, dialog debuggers
are almost useless.

The debugging system described in the article is able to function as a standalone
software product. However, work is currently underway to integrate the system into the
engineering computing portal [7, 8]. The purpose, structure of the portal, as well as the
integration scheme of the debugging system are given below.

When constructing a system for automated debugging of MPI programs, the authors
find it most productive to use a combination of several approaches, since various methods
are suitable for searching for logical errors of various types. Suppose that the program
contains deadlock, caused by the fact that two processes launched blocking communication
functions, of which they must be participants together. Fig. 1 shows a fragment of such a
program where the zero process calls the function of sending a message to the first
(MPI_Send), and the first, among others, calls the group operation MPI_Gather. In this
case, the zero process must also be a member of MPI_Gather.

The standard way to obtain information from the running processes of an MPI
application is to use the profiling interface described in the MPI standard. This interface is
used by almost all tools of automated correctness control, both developing projects and
completed ones. Among them are Umpire, Marmot, MUST [9], Intel Trace Analyzer and
Collector, which is the successor to the Intel Message Checker project [6]. The basic
principle of using a profiling interface is as follows. The developer of the tool creates a
library of MPI functions that is statically linked to the user program. While the user
application is running, calls to MPI functions are intercepted by this library. Thus, the tool
receives all the information about which process at which moment called the function and
with what actual parameters. The tool processes the received data at its discretion, and in
order for the action that the user expects to call this function to be performed, it is necessary
to call the corresponding PMPI function at any place in the handler with exactly the same
arguments as the original function.

For these reasons, when constructing our own automated debugging system, 2 methods
were used: static analysis and automated correctness control.

3 Results and Discussion

The automated debugging system has a distributed architecture and is designed to work
on a computing cluster (Fig. 1). On the head node (it is assumed that it is the compilation
node), the source code of the user program is processed by the preprocessor, which is the
first component of the system. The preprocessor introduces some additional operators and
performs static analysis. To do this, from the presented set of templates (the path to the
template directory is one of the input parameters of the preprocessor), he selects suitable for
static analysis, which is determined by the number of processes installed in the unit, and the
presence in the template text of certain keywords, which include, in particular, pseudo-
function "SIZE". The preprocessor parses these templates and passes the user code, during
which checks are performed for the occurrence of template situations. Information about
the matches found is recorded in the resulting error file, where the name of the template is
entered (field “Name”); names of source code files where an error was detected, with line
numbers; The text of the lines of code that caused the error.

At the start of its work, the analyzer server parses text template files, filling out a list of
templates with global errors and determining those MPI functions that need to be profiled
based on the contents of the templates. The server analyzer passes the list of these functions
to MPI processes. It also transfers those of the disassembled templates where the situation
is described, for the determination of which information from only one process is sufficient

3

E3S Web of Conferences 134, 02003 (2019)
SDEMR-2019

https://doi.org/10.1051/e3sconf/201913402003

(local errors). During their work, processes call MPI functions, which are intercepted by the
profiling library. If the called function is included in any patterns for local errors, then the
service flow enters information about the parameters of this operation into special
structures and performs an analysis. If a function is included in at least one of the templates
describing a global error, then its parameters and code line number are passed to the
analyzer server. That server stream, to which this MPI process is assigned, parses the
received line, enters data into special program structures and performs analysis for
compliance with the current situation patterns with global errors.

Computing services are provided directly through the portal using the CompServiceGen
component. In addition to services, users and experts interact through the portal, cooperate
with specialists, and search among ready-made solutions. Administrators are provided with
such functions as managing portal users, registering and assigning rights to access
computing resources and services.

To conduct their own computational experiments on high-performance resources, the
Onlide subsystem is used. This subsystem is a development environment with which you
can create your own code, compile and run it on available high-performance resources.

Computing services, subsystems, as well as external client systems interact with the
portal API, which is displayed in the Portal API component. The following functions are
implemented through the portal API:

1) User authorization (Auth API). Data about users, as well as about user groups,
computing resources and software is stored in an LDAP database (LDAP DB).

2) Management of user file storage (Storage API). The repository contains input files
and calculation results.

3) Interaction with software on computing resources (Software Manager API). The
Software Manager API provides the following functions:
- start and a stop of implementation of programs on remote computing resources in the form
of the identified tasks;
- tracking of a condition of the started tasks (in turn, it is carried out, it is complete);
- obtaining information on the used computing resources (the RAM, loading of the CCP)
and about the started tasks (date and time of start of a task, date and time of start of the
program, date and time of end of a task, restriction of resources).

The execution of the above functions is delegated to a specific Software Proxy
implementation, depending on the computing resource. There are currently two versions of
its implementation.

In the first version, the interaction is performed by setting up an SSH connection with a
remote computing resource and running a special Python script to be placed on that
resource. This script is responsible for running the specified program and tracking the
resources used during its operation.

In the second release, the interaction is performed by establishing a TCP connection
with the remote agent being deployed to the desired resource. The agent starts once and
processes startup requests. This version is implemented primarily for Windows computing
resources, due to the problem of running the SSH server on this operating system (OS).

The calculation services are described in the business process simulation language
BPMN. In Figю 1, the BPMN Engine is a business process execution environment. For
software BPM, this environment provides its own set of APIs (Engine APIs). The
CompServiceGen component is responsible for generating a Web interface to start and
track the status of the business process.

4

E3S Web of Conferences 134, 02003 (2019)
SDEMR-2019

https://doi.org/10.1051/e3sconf/201913402003

Fig. 1. Logical structure of the TPI in the form of a component diagram (UML2).

Camunda is selected as the execution environment for business processes. Camunda

supports most of the elements that make up the business process, as specified in BPMN 2.0.
In particular, they include an element that sends HTTP requests (for example, API requests)
and an element that allows you to call another business process (sub-process). Based on the
first element, two sub-processes are described.

The first sub-process is responsible for communicating with the user 's file store. The
repository contains input files and results of service execution (video files, images, model
3D, etc.). As input parameters, the element takes the path to the file or directory and the
action to perform on it (create, delete, move).

The second sub-process is responsible for interacting with software on compute servers,
namely, running and checking status - the program is running or has already been
completed.

4 Conclusion

Currently, environmental protection in a region with intensive mining is impossible
without the creation of computer models of the impact of industry on the environment.
These models should be presented in a single information portal, and information should be
processed with maximum accuracy.

5

E3S Web of Conferences 134, 02003 (2019)
SDEMR-2019

https://doi.org/10.1051/e3sconf/201913402003

The system presented in this paper is intended to help researchers developing MPI
applications in such a time-consuming and fairly routine part as debugging. The obvious
advantage of the system is that the user does not need any preliminary work to obtain the
result. All you have to do is specify multiple parameters and one command to run your
program under system control. At the end of the system operation, the user has a ready list
of logical errors with indication of code lines that caused the found errors. The automated
debugging system has been tested on application parallel applications. In particular, it was
used in writing the tutorial. With the help of the system, the authors of the manual found
errors in the sorting programs of the array using the method of chet-odd permutation and
block multiplication of the matrix by the vector. The current integration of the system into
the engineering computing portal will further simplify the researcher 's interaction with the
system and increase the number of users.

References

1. M. Tyulenev, S. Markov, E. Makridin, Y. Lesin, V. Gogolin, E3S Web of Conferences,
105, 02022 (2019)

2. A. Medvedev, I. Kislyakov, Ye. Prokopenko, M. Semenkina, K. Brester, E3S Web
Conf., 105, 03020 (2019)

3. J. Desouza, B. Kuhn, B. Supinski, Proceedings of the second international workshop on
Software engineering for high performance computing system applications, 1, 02101
(2005)

4. A.M. Gudov, S.Y. Zavozkin, I.Y. Sotnikov, IOP Conference Series: Earth and
Environmental Science, 115, 1 (2018)

5. A. Gudov, V. Perminov, Y. Filatov, L.H. Un, S. Zavozkin, I. Grigorieva, I. Sotnikov,
CEUR Workshop Proceedings, 1, 61-73 (2017)

6. J. Protze, T. Hilbrich, M. Schulz, B.R. de Supinski, 43rd International Conference on
Parallel Processing Workshops, 1, 206-215 (2014)

7. S. Siegel, Proceedings of the 14th European PVM/MPI Users' Group Meeting, 1, 13-14
(2007)

8. A.Yu. Vlasenko, A.M. Gudov, Journal of Computer and Systems Sciences International,
56:4, 708-720 (2017)

9. L. Williams, Upgrade Adds Muscle to Debugger (Oak Ridge National Laboratories, Oak
Ridge, 2010)

6

E3S Web of Conferences 134, 02003 (2019)
SDEMR-2019

https://doi.org/10.1051/e3sconf/201913402003

