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Abstract: A multi-layer LSTM (Long short-term memory) model is proposed for condenser vacuum 

degree prediction of power plants. Firstly, Min-max normalization is used to pre-process the input data. 

Then, the model proposes the two-layer LSTM architecture to identify the time series pattern effectively. 

ADAM（Adaptive moment）optimizer is selected to find the optimum parameters for the model during 

training. Under the proposed forecasting framework, experiments illustrates that the two-layer LSTM 

model can give a more accurate forecast to the condenser vacuum degree compared with other simple 

RNN (Recurrent Neural Network) and one-layer LSTM model. 

1 Introduction 

The condenser is the cold source of thermodynamic 

cycles in power plants, and its performance directly 

affects the unit's peak load regulation capability, 

operation safety and thermal efficiency. Condenser 

vacuum degree is an index that comprehensively reflects 

the condenser’s running state. Due to complexity of the 

model of condenser vacuum, an effective method is 

needed to predict condenser vacuum degree so as to 

realize an optimal control. 

In recent years, varieties of machine learning 

algorithms have been applied to prediction of condenser 

vacuum and achieved certain results. Ge Xiaoxia et al. [1] 

proposed a prediction model of condenser vacuum based 

on Drosophila algorithm optimization generalized 

regression neural network. Li Jianqiang et al. [2] 

constructed a steam condenser vacuum prediction model 

based on the PSO-SVR model. Zhang Liping et al. [3] 

used the particle swarm optimization algorithm to 

optimize Elman network parameters to predict the steam 

condenser vacuum on the high- and low-pressure sides. 

Wang Jianguo et al. [4] used particle swarm optimization 

to optimize radial basis function neural network (RBF) 

parameters and established a condenser vacuum 

prediction model. Zhang Hai et al. [5] put forward an 

Elman neural network condenser vacuum model based 

on particle swarm optimization. However, with the 

increase of data volume and input dimensions, machine 

learning models show obvious weaknesses in the 

calculation speed and forecast accuracy, which are 

mainly reflected by over-fit during training, slow training 

speed and poor generalization ability of the models. On 

the other hand, existing studies have not considered the 

relationship of temporal sequence in condenser vacuum, 

thus lacking the modeling research to improve the time 

series effect. 

LSTM [6] is a deep learning model with a recurrent 

network structure. It has made a series of achievements 

in natural language processing [7], image recognition [8] 

and other fields, and its prediction accuracy and 

reliability have been significantly improved. Daniel M, 

Kasun A and Milos M [9] compare the short-term power 

load forecasting accuracy of standard LSTM model and 

Seq2seq (Sequence to sequence) network based on 

LSTM. Zheng H T, Yuan J B and Chen L [10] give a 

general framework, which combines similar day 

selection, empirical mode decomposition and LSTM 

model to predict short-term load. 

In this paper, a multi-layer LSTM based condenser 

vacuum degree prediction model for power plants is 

proposed. Firstly, the real-time weather and vacuum 

history information is normalized using Min-max method. 

Secondly, a two-layer LSTM architecture is designed as 

the forecast model. In the process of training, the model 

adopts ADAM method to find the optimum parameters. 

Last, this model is applied a power plant in Shandong 

Province from July 1 to 26, 2017 for vacuum degree 

prediction. Compared with the baseline results from 

simple RNN network model and single-layer LSTM 

model, the prediction effect of this method has been 

significantly improved. 

2 Long short-term Memory 

LSTM is a kind of gate-controlled recurrent neural 

network, which uses input gate, forgetting gate and 

output gate to deal with the gradient vanishing problem 

due to the long-time dependency in inputs. The structure 

of LSTM is shown in Fig. 1: 
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Figure1. LSTM Cell Structure 

In the LSTM structure described above, the input 

sequence is = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑇] , where 𝑇 is the length 

of the temporal sequence. The output sequence is 𝑦 =
[𝑦1 , 𝑦2, 𝑦3, … , 𝑦𝑇]  wherein, 𝑦𝑡  is represented as the 

output value at 𝑡 . The cell state sequence is 𝑐 =
[𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑇], where 𝑐𝑡 is the state value. In addition, 

𝑖𝑡, 𝑓𝑡 and 𝑜𝑡 denote output gate, forget gate and output 

gate. 

𝑖𝑡  = 𝜎𝑠𝑖𝑔 (𝑊𝑖𝑐𝑡−1 + 𝑈𝑖𝑥𝑥𝑡 + 𝑈𝑖𝑦𝑦𝑡−1 + 𝑏𝑖)  (1)  

𝑓𝑡  = 𝜎𝑠𝑖𝑔  (𝑊𝑓𝑐𝑡−1 + 𝑈𝑓𝑥𝑥𝑡 + 𝑈𝑓𝑦𝑦𝑡−1 + 𝑏𝑓) (2)  

𝑜𝑡  = 𝜎𝑠𝑖𝑔  (𝑊𝑜𝑐𝑡−1 + 𝑈𝑜𝑥𝑥𝑡 + 𝑈𝑜𝑦𝑦𝑡−1 + 𝑏𝑜) (3)  

𝑐𝑡 = 𝑓𝑡⨂𝑐𝑡−1 + 𝑖𝑡⨂𝜙𝑡𝑎𝑛ℎ(𝑊𝑐𝑐𝑡−1 + 𝑈𝑐𝑥𝑥𝑡

+ 𝑈𝑐𝑦𝑦𝑡−1 + 𝑏𝑐) 
(4)  

𝑦𝑡 = 𝑜𝑡⨂𝜙𝑡𝑎𝑛ℎ(𝑐𝑡) (5)  

where ⨂ denotes the Hadamard product; 𝑊 , 𝑈  and 

𝑏are weight matrices which need to be learned during 

training; 𝜙𝑡𝑎𝑛ℎ  and 𝜎𝑠𝑖𝑔  denote the Tanh activation 

function [11] and Sigmoid activation function. 

3 Condenser Vacuum Degree 
Prediction Model 

3.1 Data Preprocessing 

In order to prevent neurons from over-saturation during 

training, input data need to be normalized. In addition, it 

can also help to prevent the objective function from 

being affected by excessive deviation of a certain 

dimension due to its unit’s effect. The formula of 

normalized data here is: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

 (6)  

where xmaxand xmin are the maximum and minimum 

vectors of input. 

3.2 Model Construction 

Condenser vacuum degree is affected by inlet 

temperature of cooling water, temperature rise of cooling 

water and end difference of condenser [13], of which the 

inlet temperature of cooling water is mainly affected by 

ambient temperature, and external atmospheric pressure. 

Therefore, the model takes air temperature, humidity, 

wind speed, air pressure and historical vacuum values as 

inputs. The vacuum degree of the next day was taken as 

the output variable. The model adopts a two-layer LSTM 

structure as shown in Fig. 2.  
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Figure2. LSTM based Condenser Vacuum Degree Prediction 

Model 

The inputs of the model are weather data in the 

forecast period as well as vacuum value in the historical 

period. Output is the vacuum value in the forecast period. 

Here, the time step is set to 144, since the predicting 

vacuum value for the next 24 hour is required a 10 

minutes time interval. Mean square error for the target 

loss function is as follows: 

Loss =
1

M
∑(𝑦𝑡 − 𝑦̂𝑡)2

M

t=1

 (7)  

ADAM [14] is selected as the gradient descent 

optimization algorithm. 

3.3 Forecasting Process 

Using multi-layer LSTM network model to predict 

condenser vacuum degree mainly follows the steps as: 

1. Data collection: select temperature, air pressure, 

wind speed, humidity data and condenser vacuum degree 

historical data, where the time interval should be 10 

minutes for one day.  

2. Data normalization: divide the collected data into 

training set data and test set data, and use a Min-max 

method to normalize the data to [0,1]. 
3. Model training and prediction: train the model 

using a two-layer LSTM architecture and the normalized 

test set data are brought into the trained model for 

prediction. The whole process is shown in Fig. 3. 
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Figure3. Model Prediction Flowchart 

4 Dataset and experimental results 

The proposed model is applied to a 600MW power plant 

in Shandong Province for experiments. The training data 

ranges from June 1 to July 26, 2016. We use Pytorch to 

build a deep learning model and train the model using 

GPUs. Here, the batch size for training data is set to 32, 

and batch size for test data is 64. The initial learning rate 

is 0.01 and decays exponentially starting from the 100th 

training epochs. The error measurement here is RMSRE 

(Root Mean Square Error, RMSE): 

𝑅MSRE = √
1

𝑛
∑ (

𝑦𝑖̂ − 𝑦𝑖

𝑦𝑖

)

2𝑛

𝑖=1

 (8)  

in which, the actual value is expressed as yi and the 

predicted value is ŷi . 

In the experiment, we select the simple RNN network 

and single-layer LSTM model as comparison. Fig. 4 

shows the results for the three models. It can be observed 

that after 500 epochs of training, the error level of the 

simple RNN network model reaches the top of the three. 

This is due to the inability of the Simple RNN network in 

learning a temporal relationship, which results in an error 

level of 2.22%. Meanwhile, due to the only one layer in 

the model, the capacity of the single-layer LSTM model 

(with a prediction error of 0.95%) is smaller than that of 

the multi-layer LSTM model (with a prediction error of 

0.91%), so the error level is higher than that of the latter.  

 

Figure4. Actual Values vs. Predictions 

5 Conclusion 

The goal of the present work is to investigate condenser 

vacuum degree prediction forecast performance using a 

multi-layer LSTM model. We show comparisons of this 

multi-layer model with a simple RNN and one-layer 

LSTM model that using a more complex architecture can 

increase the model capacity thereby lowering the test 

error. Using the proposed model in this paper, power 

plants could improve steam efficiency and grid 

companies can make more effective arrangement on the 

power distribution according to power plants’ generation 

capacity.  
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