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Abstract: Research on the variation of soil infiltration is helpful to analyze the mechanism of soil water 
movement in farmland. At the same time, soil infiltration characteristics affect the surface irrigation. Based 
on the field test data, this study simulated and analyzed the soil infiltration with three soil infiltration models 
(Kostiakov-Lewis model, Philip model and Horton model). The infiltration uncertainty of farmland soil are 
investigated, and proposed by using two random simulation methods (direct method and parameter mean 
method) of infiltration. The evaluated indicators are the interval size and its stability of cumulative 
infiltration amount changed with 95% confidence. The effects of different random simulations methods and 
three models on the infiltration process are compared and analyzed. Finally, the model and stochastic 
simulation method suitable for the infiltration characteristics of the farmland are determined. The results 
show that the correlation coefficients of the three models are all above 0.98, and there is no significant 
difference in fitting accuracy. In terms of the degree of spatial uncertainty (determined by standard 
deviation): direct method > parameter mean method, in which the combination of the Kostiakov-Lewis 
model and the parameter mean method have less uncertainty, and the combined simulation effect is better, it 
is more suitable for the simulation of soil infiltration at farmland scale. 

1 Introduction 

Infiltration is one of the important water exchange 
processes in farmland, and it is also an important factor 
affecting the uniformity of farmland irrigation [1]. 
Affected by the heterogeneous distribution of soil, 
infiltration often show strong spatial and temporal 
variability [2 3], there are significant variations even on the 
field scale [4]. This causes great difficulty and uncertainty 
to the precise irrigation of farmland, the parameterization 
of hydrological models and the simulation of soil 
hydrological processes [5]. Understanding the spatial 
variability of soil infiltration is of great significance for 
accurately simulating soil infiltration. 
   In general, the spatial variability of soil infiltration is 
more focused on the evaluation of infiltration variability. 
The research on the effects of spatial variability on the 
infiltration process is rarely reported. Based on the field 
soil infiltration test, this study analyzes the soil water 
infiltration process and its parameter variation and 
uncertainty on the farmland scale by Kostiakov-lewis, 
Philip and Horton model. It is hoped that the optimal 
combination of soil water infiltration model and 
uncertainty simulation method suitable for the study area 
will be given, which will provide a theoretical basis for 
soil infiltration simulation. 
 

2 Materials and Methods 

2.1 Test area overview and infiltration test 
method 

The test area is located in the West Campus of Tianjin 
agricultural university, Yangliuqing Town, Xiqing 
District, Tianjin. The test area has 0.9 hectares of arable 
land, and has good irrigation conditions. Irrigation is 
generally 2 to 3 times for the wheat growth period, and 1 
or 2 times for the corn. The average annual temperature 
is 12.2 °C in the region, the average annual rainfall is 
about 557.3 mm, and the evaporation is 1735.9 mm. The 
soil texture is medium-light loam. The average bulk 
weight of soil is 1.42g/cm3 in 0-100cm, the field water 
holding capacity is 24.0%, and the groundwater depth is 
3-5m. 

This experiment selects five measuring points from 
west to east in corn planting farmland (100m×30m). The 
distance between each measuring point is 15m. The first 
measuring point is 15m away from the north and south 
sides of the corn field, 30 meters from the West side, the 
fifth point is 10 meters away from the east side, the 
specific arrangement of the measuring points is shown in 
Figure 1. The double-ring infiltration instrument (inner 
ring diameter 30 cm, outer ring diameter 60 cm, height 
25 cm) was used to measure the infiltration, which was 
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divided into four steps: leveling the land (removing 
surface vegetation and stones, etc.) , place the ring (the 
inner and outer rings are placed vertically in the soil 
10cm depth, the inner and outer rings are concentric), 
make the mark (insert the steel ruler on the inner wall of 
the inner ring, mark 5cm away from the soil surface) and 
add water time (the inner and outer rings maintain the 
same head 5cm), when the water depth drops by 1 cm, 
water is added in time and the amount and time of the 
added water is recorded . When the water addition 
interval is close, the test can be ended. 

 

Figure 1 Layout of the infiltration test point (unit: m)  

2.2. Stochastic simulation based on spatial 
variability of cumulative infiltration. 

The spatial variation of soil infiltration in farmland 
means that the infiltration characteristics are random with 
the change of spatial point, that is, the amount of water 
infiltrated at different spatial points in the same 
infiltration time is different, and the infiltration rate is 
also different. The main reason for the uncertainty is the 
difference in soil texture, profile distribution structure 
and soil moisture content before infiltration at different 
spatial points. The spatial uncertainty of soil infiltration 
in farmland can be expressed by the mean value and 
standard deviation of the soil infiltration data. The value 
can be determined by analyzing the soil infiltration test 
data at different spatial points in the farmland. 

Objectively, the spatial uncertainty of soil infiltration 
is certain. However, different analytical methods, 
different field infiltration test points will yield different 
variability. This paper selects Kostiakov-Lewis (hereafter 
abbreviated as K-L), Horton model and Philip model (see 
Table 1), analyzes the spatial variability of the model 
parameters, and based on this, simulates the spatial 
variability of farmland soil infiltration, and simulation of 
the spatial uncertainty of the infiltration is carried out 
based on the spatial uncertainty of accumulation 
infiltration, targeting the uncertainty interval as small and 
stable as possible, a method for expressing the spatial 
uncertainty of soil infiltration is given. 

 
 
 

Table 1 Introduction of infiltration model 

Model name 
Cumulative infiltration 

amount / mm 
Model parameter

Philip AtStI  2

1

 S、A 

K-L 0I Kt f t   K、α、f0 

Horton  0

1
(1c cI i t i i


    ic、i0、β 

Notes: I(t) is the cumulative infiltration, cm; ic is the stable 
infiltration rate; i0 is the initial infiltration rate; β is the 
empirical constant related to soil properties; t is the infiltration 
time , min. S is the soil moisture absorption rate; A is the stable 
infiltration rate; K is infiltration coefficient; α is infiltration 
attenuation rate; f0 is stable infiltration rate, cm/min. 
 

The stochastic simulation based on the spatial 
variability of cumulative infiltration is carried out by 
using the average value (equation (1)), the standard 
deviation (formula (2)) and the deviation coefficient are 
analyzed (equation (3)), the method is referred to herein 
as the direct method. Greater the standard deviation and 
the deviation coefficient, larger is the uncertainty of the 
infiltration; on the contrary, less uncertain of the 
infiltration of farmland soils. 
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Where, ( jI (t))is the cumulative infiltration amount 

tested at the j-th point at the time t, min, which is the 
average value of the accumulated infiltration amount 

( jI (t)) at all measuring points, t; j is the number of 

measuring points in the infiltration test, j=1 , 2, ..., n, n is 
the number of points. 

The stochastic simulation of cumulative infiltration 
based on the spatial variation of cumulative infiltration 
can be simulated by equation (4) [6], 

     ˆ
II t I t t          （4） 

Where, ε is a random sequence, which follows the 
normal distribution N(0,1), and the other symbols have 
the same meaning as before. Wherein, the normal 
random sequence ε is generated by using a 
transformation method, such as equation (5), 

1 1 2

2 1 2
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-2 ln sin 2

u u

u u

 

 

 



       （5） 

Where u1 and u2 are uniform random numbers over 
the interval [0,1]; and are purely random sequences of 
standard normal distribution independent of each other, 
ε~N(0,1). 

2.3 Stochastic simulation based on spatial 
variability of parameters  

In order to determine the infiltration law of farmland soil, 
M spatial points are selected to measure the infiltration 
data, and the M group model parameters can be obtained. 
The mean and standard deviation of the corresponding 
model are obtained, and the random simulation is carried 
out. This is the parameter mean method. The stochastic 
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simulation corresponding to the K-L model is simulated 
as follows. 

K ss
s s KK K     , 

       ,
0 00 o f ff f     （6） 

The simulation method for each parameter 
corresponding to the Horton model is as follows. 

c cc c i ii i     ,
0 00 0 i ii i     ,

          （7） 

The simulation method for each parameter 
corresponding to the Philip model is as follows. 

S SS S     , A AA A             （8） 

Where Kୱ，α，f୭，iୡ，i଴，β，S and A are the average 
values of the corresponding parameters of the M group 
infiltration test; respectively ε୏౩，ε஑，𝜀௙௢，ε୧ౙ，ε୧బ，εஒ，
εୗ  and ε୅  are the random sequences of the 
corresponding parameters obeying the normal 

distribution N(0,1); Ks


、  、 0f


、 ci


、 0i


、  、

S
 and A

are the standard deviation of the 
parameters, which are functions of the infiltration time. 
Other symbols have the same meaning as before. 

The uncertainty of the cumulative infiltration in the 
parameter mean method is expressed by the cumulative 
infiltration amount change interval obtained by 95% 
confidence. In order to avoid unreasonable data during 
the random simulation of the model parameters, the 

parameter values determined based on the measured data 
are used to obtain the variation interval according to the 
95% confidence (see equation (9)). The method uses the 
uncertainty of the infiltration model parameters to 
describe the spatial variability of infiltration and is more 
explanatory to the soil infiltration process. 

/2y y
n




                      （9） 

Where, y is the upper and lower confidence limit of 

the parameter; y is the average of the parameters; σis 

the standard deviation; n is the number of measuring 

points; αis the confidence level; /2Z  it is found by 
the normal distribution table. 

3 Results analysis 

3.1 Analysis of parameter fitting results 

The soil infiltration data of five measuring points were 
analyzed, and the three infiltration models (Table 1) were 
fitted and analyzed, and the model parameters fitting 
results were obtained (see Table 2). 

 

Table 2 Infiltration model parameter fitting results 

model parameter 
Measured point

average σ CV/%
1 2 3 4 5

K-L k 17.813 15.683 22.799 19.475 16.198 18.3936 2.8759 15.63
 f0 0.2918 0.3865 0.4742 0.5023 0.2533 0.38162 0.1092 28.61
 а 0.2829 0.2611 0.2464 0.2800 0.4039 0.2949 0.0627 21.28
 R2 0.9974 0.9946 0.9931 0.9982 0.9967 0.9960   

Horton ic 0.5677 0.5975 0.7219 0.7775 0.8052 0.6940 0.1065 15.35
 i0 15.7018 12.8365 18.1301 13.7633 11.5290 14.3921 2.5836 17.95
 β 0.4058 0.3901 0.3869 0.3058 0.2267 0.3431 0.0758 22.10
 R2 0.9960 0.9992 0.9992 0.9976 0.9948 0.9974   

Philip S 9.672 9.117 12.026 12.086 13.007 11.1816 1.6885 15.10
 A     
 R2 0.9781 0.9845 0.9784 0.9895 0.9946 0.9850   

 
From the model fitting results, the average relative 

error of the simulated of the Horton model is the smallest 
(3.1%), and the average relative error of the Philip model 
is the largest (8.7%); the Cv of each model parameter is 
between 0.153 ~0.286, the standard deviation is between 
0.062~2.876. The correlation coefficient of Horton model 
is the largest, reaching 0.9974, and the Philip model is 
smaller, but the total is above 0.98, which indicates that 
the simulation accuracy of each model is high for 
farmland infiltration. 

3.2 Spatial uncertainty analysis of infiltration  

The spatial uncertainty analysis of soil infiltration aims 
to give the optimal combination of model and stochastic 
simulation method to describe the uncertainty of 
farmland soil infiltration. The analysis is based on 

different stochastic simulation methods as follows. 
Using the data of five test points, according to formula 

(2), the standard deviation of the infiltration is obtained. 
The random simulation of cumulative infiltration is 
performed by equation (4), and the number of 
simulations is 200 times. The confidence upper and 
lower limits of the cumulative infiltration simulation at 
95% confidence based on table 3 and the mean and 
standard deviation (equation (1) and (2)) are shown in 
Figure 2. In order to illustrate the stability of the upper 
and lower confidence simulation results, three sets of 
random simulations were performed. Each group was 
carried out to 200 random simulations. Three infiltration 
times were selected for 30, 90 and 130 minutes, and the 
corresponding time cumulative infiltration amount was 
given. The lower and upper limit and its Cv are shown in 
Table 4. 
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Table 3 Confidence upper and lower limits of parameter random simulation 

Model  K-L Horton Philip 
parameter K fo/mm/min α io/mm/min ic/mm/min β S 

upper limit 23.2 0.6 0.4 16.7 0.8 0.4 12.7 
Lower limit 11.4 0.1 0.2 12.1 0.6 0.3 9.7 

 
The results (Figure 2) show that the cumulative 

infiltration of the five points is within the upper and 
lower confidence limits; the upper confidence limit 
increases with the infiltration time, and the lower 

confidence limit increases too slowly with the infiltration 
time, among them. The simulated results based on K-L 
model parameters are the best, and the simulation results 
are more stable (Table 4). 

 

 

Figure 2 The confidence upper and lower limits based on model parameters and direct method stochastic simulation 

Table 4 Confidence upper and lower limit for cumulative infiltration 

simulation 
method 

model 
time / 
min 

Number of replicates randomly simulated (200 times/group) 
1 2 3 CV /% 

upper 
limit 

Lower  
limit 

upper 
limit 

Lower 
limit 

upper 
limit

Lower 
limit 

upper 
limit 

Lower 
limit 

Direct  —— 
30 73.7 45.7 73.7 48.4 74.9 48.2 0.8 2.6 

90 128.5 73.9 128.5 79.1 130.8 78.7 0.8 3.1 
130 158.3 94 158.3 100.1 161 99.7 0.8 2.8 

Parameter 
mean  

K-L 
30 80.8 45.2 82 45.2 78.8 45.8 1.6 0.6 
90 136 70.4 140.3 72.5 135.2 72.7 1.6 1.4 

130 166.3 84.9 172.9 86.4 166.8 85.7 1.8 0.7 

 

4 Conclusion 

(1) For the soil infiltration of farmland, considering the 
parameter structure of the model and the Spatial 
uncertainty of infiltration based on the measured data, 
two stochastic simulation methods for the farmland 
infiltration are proposed, namely the direct method and 
the mean method of the parameters. The parameter mean 
method based on the K-L model is better. 

(2) In terms of the size of the uncertainty interval and 
the stability of the upper and lower limits of the interval, 
the K-L model has the best combination simulation effect 
and can be used to simulate the soil infiltration on the 
farmland scale. 
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